Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 92(4): 3483-3491, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31986878

ABSTRACT

For decades, there has been immense progress in miniaturizing analytical methods based on electrophoresis to improve sensitivity and to reduce sample volumes, separation times, and/or equipment cost and space requirements, in applications ranging from analysis of biological samples to environmental analysis to forensics. In the field of radiochemistry, where radiation-shielded laboratory space is limited, there has been great interest in harnessing the compactness, high efficiency, and speed of microfluidics to synthesize short-lived radiolabeled compounds. We recently proposed that analysis of these compounds could also benefit from miniaturization and have been investigating capillary electrophoresis (CE) and hybrid microchip electrophoresis (hybrid-MCE) as alternatives to the typically used high-performance liquid chromatography (HPLC). We previously showed separation of the positron-emission tomography (PET) imaging tracer 3'-deoxy-3'-fluorothymidine (FLT) from its impurities in a hybrid-MCE device with UV detection, with similar separation performance to HPLC, but with improved speed and lower sample volumes. In this paper, we have developed an integrated radiation detector to enable measurement of the emitted radiation from radiolabeled compounds. Though conventional radiation detectors have been incorporated into CE systems in the past, these approaches cannot be readily integrated into a compact hybrid-MCE device. We instead employed a solid-state avalanche photodiode (APD)-based detector for real-time, high-sensitivity ß particle detection. The integrated system can reliably separate [18F]FLT from its impurities and perform chemical identification via coinjection with nonradioactive reference standard. This system can quantitate samples with radioactivity concentrations as low as 114 MBq/mL (3.1 mCi/mL), which is sufficient for analysis of radiochemical purity of radiopharmaceuticals.


Subject(s)
Dideoxynucleosides/analysis , Electrophoresis, Microchip , Chromatography, Liquid , Electrophoresis, Microchip/instrumentation , Fluorine Radioisotopes
2.
Proc Natl Acad Sci U S A ; 109(3): 690-5, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22210110

ABSTRACT

We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of [(18)F]FDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of [(18)F]FTAG (88 ± 7%, n = 11) and quantitative hydrolysis to [(18)F]FDG (> 95%, n = 11). We furthermore show that batches of purified [(18)F]FDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than best-case results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps.


Subject(s)
Electronics/instrumentation , Microchemistry/instrumentation , Microchemistry/methods , Microfluidic Analytical Techniques , Molecular Probes/chemical synthesis , Animals , Chromatography, Thin Layer , Electrowetting , Fluorine Radioisotopes , Fluorodeoxyglucose F18/chemical synthesis , Halogenation , Humans , Lymphoma/diagnostic imaging , Mice , Mice, SCID , Positron-Emission Tomography , Quality Control , Tissue Distribution , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
3.
J Phys Chem B ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115241

ABSTRACT

The development of drug resistance is a nearly universal phenomenon in patients with glioblastoma multiforme (GBM) brain tumors. Upon treatment, GBM cancer cells may initially undergo a drug-induced cell-state change to a drug-tolerant, slow-cycling state. The kinetics of that process are not well understood, in part due to the heterogeneity of GBM tumors and tumor models, which can confound the interpretation of kinetic data. Here, we resolve drug-adaptation kinetics in a patient-derived in vitro GBM tumor model characterized by the epithelial growth factor receptor (EGFR) variant(v)III oncogene treated with an EGFR inhibitor. We use radiolabeled 18F-fluorodeoxyglucose (FDG) to monitor the glucose uptake trajectories of single GBM cancer cells over a 12 h period of drug treatment. Autocorrelation analysis of the single-cell glucose uptake trajectories reveals evidence of a drug-induced cell-state change from a high- to low-glycolytic phenotype after 5-7 h of drug treatment. Information theoretic analysis of a bulk transcriptome kinetic series of the GBM tumor model delineated the underlying molecular mechanisms driving the cellular state change, including a shift from a stem-like mesenchymal state to a more differentiated, slow-cycling astrocyte-like state. Our results demonstrate that complex drug-induced cancer cell-state changes of cancer cells can be captured via measurements of single cell metabolic trajectories and reveal the extremely facile nature of drug adaptation.

4.
Analyst ; 138(19): 5654-64, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23928799

ABSTRACT

Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [(18)F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from (18)F beta particles traversing materials of interest during [(18)F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the (18)F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [(18)O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to optimize the mixing protocol as well as identify and correct for loss of radioactivity due to the migration of radioactive vapor outside of the EWOD heater, enabling an overall increase in the crude radiochemical yield from 50 ± 3% (n = 3) to 72 ± 13% (n = 5).


Subject(s)
Fluorodeoxyglucose F18/analysis , Microfluidics/methods , Optical Imaging/methods , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18/chemical synthesis
5.
Phys Med Biol ; 68(9)2023 04 27.
Article in English | MEDLINE | ID: mdl-37040784

ABSTRACT

Objective. We propose a novel four-layer depth-of-interaction (DOI) encoding phoswich detector using lutetium-yttrium oxyothosilicate (LYSO) and bismuth germanate (BGO) scintillator crystal arrays for high sensitivity and high spatial resolution small animal PET imaging.Approach. The detector was comprised of a stack of four alternating LYSO and BGO scintillator crystal arrays coupled to an 8 × 8 multi-pixel photon counter (MPPC) array and read out by a PETsys TOFPET2 application specific integrated circuit. The four layers from the top (gamma ray entrance) to the bottom (facing the MPPC) consisted of a 24 × 24 array of 0.99 × 0.99 × 6 mm3LYSO crystals, a 24 × 24 array of 0.99 × 0.99 × 6 mm3BGO crystals, a 16 × 16 array of 1.53 × 1.53 × 6 mm3LYSO crystals and a 16 × 16 array of 1.53 × 1.53 × 6 mm3BGO crystals.Main results. Events that occurred in the LYSO and BGO layers were first separated by measuring the pulse energy (integrated charge) and duration (time over threshold (ToT)) from the scintillation pulses. Convolutional neural networks (CNNs) were then used to distinguish between the top and lower LYSO layers and between the upper and bottom BGO layers. Measurements with the prototype detector showed that our proposed method successfully identified events from all four layers. The CNN models achieved a classification accuracy of 91% for distinguishing the two LYSO layers and 81% for distinguishing the two BGO layers. The measured average energy resolution was 13.1% ± 1.7% for the top LYSO layer, 34.0% ± 6.3% for the upper BGO layer, 12.3% ± 1.3% for the lower LYSO layer, and 33.9% ± 6.9% for the bottom BGO layer. The timing resolution between each individual layer (from the top to the bottom) and a single crystal reference detector was 350 ps, 2.8 ns, 328 ps, and 2.1 ns respectively.Significance. In conclusion, the proposed four-layer DOI encoding detector achieved high performance and is an attractive choice for next-generation high sensitivity and high spatial resolution small animal positron emission tomography systems.


Subject(s)
Lutetium , Positron-Emission Tomography , Animals , Lutetium/chemistry , Positron-Emission Tomography/methods , Photons , Neural Networks, Computer , Gamma Rays
6.
Front Phys ; 92021.
Article in English | MEDLINE | ID: mdl-36213527

ABSTRACT

Over the past several years there has been an explosion of interest in exploiting Cerenkov radiation to enable in vivo and intraoperative optical imaging of subjects injected with trace amounts of radiopharmaceuticals. At the same time, Cerenkov luminescence imaging (CLI) also has been serving as a critical tool in radiochemistry, especially for the development of novel microfluidic devices for producing radiopharmaceuticals. By enabling microfluidic processes to be monitored non-destructively in situ, CLI has made it possible to literally watch the activity distribution as the synthesis occurs, and to quantitatively measure activity propagation and losses at each step of synthesis, paving the way for significant strides forward in performance and robustness of those devices. In some cases, CLI has enabled detection and resolution of unexpected problems not observable via standard optical methods. CLI is also being used in analytical radiochemistry to increase the reliability of radio-thin layer chromatography (radio-TLC) assays. Rapid and high-resolution Cerenkov imaging of radio-TLC plates enables detection of issues in the spotting or separation process, improves chromatographic resolution (and/or allows reduced separation distance and time), and enables increased throughput by allowing multiple samples to be spotted side-by-side on a single TLC plate for parallel separation and readout. In combination with new multi-reaction microfluidic chips, this is creating a new possibility for high-throughput optimization in radiochemistry. In this mini review, we provide an overview of the role that CLI has played to date in the radiochemistry side of radiopharmaceuticals.

7.
Med Phys ; 37(11): 6070-83, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21158319

ABSTRACT

PURPOSE: The traditional figures of merit used in the evaluation of positron emission tomography (PET) systems, including system sensitivity and spatial resolution, do not directly reflect the minimum detectable activity (MDA) performance, despite the fact that it is one of the most important tasks for a PET system. MDA, as a combination of the more traditional PET system parameters, is directly related to lesion detection. However, MDA evaluation is task specific and cannot be done by a single measurement. Therefore, a simple method to evaluate system detectability needs to be developed. METHODS: In this work, an analytical method of MDA estimation was developed, taking into account system sensitivity, spatial resolution, source properties, and noise propagation in image reconstruction by using the Rose criterion and/or the Curie equation as the detection standard. In the implementation, the source background, as well as the intrinsic activity background from the scintillation material of the system, was also taken into consideration. The accuracy of this method was evaluated in two commercially available preclinical PET systems, with phantom experiments that were designed to closely mimic in vivo tumor uptake without introducing finite boundaries between the source and the background. RESULTS: The lesion contrast-to-noise ratio calculated by the analytical evaluation showed good agreement with that obtained from the experiments. Visual assessment of the reconstructed images at the detection limit (based on analytical evaluation) also was in agreement with the Rose criterion. The MDA performance was quantitatively compared between the two preclinical PET systems and showed different detection limits under different imaging conditions, suggesting that the detection limit of a PET system strongly depends on the lesion properties and acquisition settings. CONCLUSIONS: An analytical method of evaluating the PET system detectability was developed and validated by experiments. Overall, the analytical MDA calculation provides a simple way to evaluate the signal detectability of a PET system and can be used for comparing different systems. It also provides guidelines for designing new PET tomographs as well as optimizing data acquisition protocols.


Subject(s)
Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Algorithms , Animals , Calibration , Equipment Design , Humans , Models, Statistical , Phantoms, Imaging , Radiopharmaceuticals/pharmacology , Reproducibility of Results , Scattering, Radiation , Time Factors
8.
Phys Med Biol ; 65(24): 245017, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33202397

ABSTRACT

We present the performance of a digital phoswich positron emission tomography (PET) detector, composed by layers of pixilated scintillator arrays, read out by solid state light detectors and an application specific integrated circuit (ASIC). We investigated the use of integrated charge from the scintillation pulses along with time-over-threshold (ToT) to determine the layer of interaction (DOI) in the scintillator. Simulations were performed to assess the effectiveness of the ToT measurements for separating the scintillator events and identifying cross-layer-crystal-scatter (CLCS) events. These simulations indicate that ToT and charge integration from such a detector provide sufficient information to determine the layer of interaction. To demonstrate this in practice, we used a pair of prototype LYSO/BGO detectors. One detector consisted of a 19 × 19 array of 7 mm long LYSO crystals (1.36 mm pitch) coupled to a 16 × 16 array of 8 mm long BGO crystals (1.63 mm pitch). The other detector was similar except the LYSO crystal pitch was 1.63 mm. These detectors were coupled to an 8 × 8 multi-pixel photon counter mounted on a PETsys TOFPET2 ASIC. This high performance ASIC provided digital readout of the integrated charge and ToT from these detectors. We present a method to separate the events from the two scintillator layers using the ToT, and also investigate the performance of this detector. All the crystals within the proposed detector were clearly resolved, and the peak to valley ratio was 11.8 ± 4.0 and 10.1 ± 2.9 for the LYSO and BGO flood images. The measured energy resolution was 9.9% ± 1.3% and 28.5% ± 5.0% respectively for the LYSO and BGO crystals in the phoswich layers. The timing resolution between the LYSO-LYSO, LYSO-BGO and BGO-BGO coincidences was 468 ps, 1.33 ns and 2.14 ns respectively. Results show ToT can be used to identify the crystal layer where events occurred and also identify and reject the majority of CLCS events between layers.


Subject(s)
Positron-Emission Tomography/methods , Photons , Scintillation Counting
9.
Nucl Med Biol ; 82-83: 41-48, 2020.
Article in English | MEDLINE | ID: mdl-31891883

ABSTRACT

INTRODUCTION: Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization. In a couple of studies, Cerenkov luminescence imaging (CLI) has been used for reading radio-TLC plates spotted with a variety of isotopes. We show that this approach can be extended to develop a high-throughput approach for radio-TLC analysis of many samples. METHODS: The high-throughput radio-TLC analysis was carried out by performing parallel development of multiple radioactive samples spotted on a single TLC plate, followed by simultaneous readout of the separated samples using Cerenkov imaging. Using custom-written MATLAB software, images were processed and regions of interest (ROIs) were drawn to enclose the radioactive regions/spots. For each sample, the proportion of integrated signal in each ROI was computed. Various crude samples of [18F]fallypride, [18F]FET and [177Lu]Lu-PSMA-617 were prepared for demonstration of this new method. RESULTS: Benefiting from a parallel developing process and high resolution of CLI-based readout, total analysis time for eight [18F]fallypride samples was 7.5 min (2.5 min for parallel developing, 5 min for parallel readout), which was significantly shorter than the 48 min needed using conventional approaches (24 min for sequential developing, 24 min for sequential readout on a radio-TLC scanner). The greater separation resolution of CLI enabled the discovery of a low-abundance side product from a crude [18F]FET sample that was not discernable using the radio-TLC scanner. Using the CLI-based readout method, we also observed that high labeling efficiency (99%) of [177Lu]Lu-PSMA-617 can be achieved in just 10 min, rather than the typical 30 min timeframe used. CONCLUSIONS: Cerenkov imaging in combination with parallel developing of multiple samples on a single TLC plate proved to be a practical method for rapid, high-throughput radio-TLC analysis.


Subject(s)
Chromatography, Thin Layer/methods , Luminescence , Optical Imaging
10.
Phys Med Biol ; 65(4): 045009, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31935693

ABSTRACT

HiPET is a recently developed prototype preclinical PET scanner dedicated to high sensitivity and high resolution molecular imaging. The HiPET system employs a phoswich depth of interaction (DOI) detector design, which also allows identification of the large majority of the cross layer crystal scatter (CLCS) events. This work evaluates its performance characteristics following the National Electrical Manufacturers Association (NEMA) NU4-2008 protocol. The HiPET consists of twenty flat panel type detectors arranged in two rings. The inner diameter is 160 mm and the axial field of view (FOV) is 104 mm. Each detector is comprised of two layers of phoswich scintillator crystal arrays, a tapered, pixelated glass lightguide and a multi anode photomultiplier tube (MAPMT). The front (gamma ray entrance) layer is a 48 × 48 pixelated cerium doped lutetium yttrium orthosilicate (LYSO) scintillator array with individual crystals measuring 1.01 × 1.01 × 6.1 mm. The back (towards the PMT) layer is a 32 × 32 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.55 × 1.55 × 8.9 mm. For energy windows of 250-650 keV and 350-650 keV, the peak absolute sensitivity at the center of the FOV was 13.5% and 10.4% including CLCS events, and 11.8% and 8.9% excluding CLCS events, respectively. The average detector energy resolution derived by averaging the individual crystal spectra was 11.7% ± 1.4% for LYSO and 17.0% ± 1.4% for BGO. The 3D ordered-subsets expectation maximization (OSEM) reconstructed image of a point source in air, ranged from 0.73 mm to 1.19 mm, with an average value of 0.93 ± 0.09 mm at all measured locations. The peak noise equivalent count rate (NECR) and scatter fraction were 179 kcps at 12.4 MBq and 6.9% for the mouse-sized phantom, and 63 kcps at 11.3 MBq and 18.3% for the rat-sized phantom. For the NEMA image quality phantom, the uniformity was 5.8%, and the spillover ratios measured in the water- and air-filled cold region chambers were 0.047 and 0.044, respectively. The recovery coefficients (RC) ranged from 0.31 to 0.92. These results and in vivo evaluation demonstrate that the HiPET can achieve high quality molecular imaging for biomedical applications.


Subject(s)
Positron-Emission Tomography , Signal-To-Noise Ratio , Animals , Equipment Design , Mice , Phantoms, Imaging , Rats , Tomography, X-Ray Computed
11.
J Nucl Med ; 50(3): 401-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19223424

ABSTRACT

UNLABELLED: The Inveon dedicated PET (DPET) scanner is the latest generation of preclinical PET systems devoted to high-resolution and high-sensitivity murine model imaging. In this study, we report on its performance based on the National Electrical Manufacturers Association (NEMA) NU-4 standards. METHODS: The Inveon DPET consists of 64 lutetium oxyorthosilicate block detectors arranged in 4 contiguous rings, with a 16.1-cm ring diameter and a 12.7-cm axial length. Each detector block consists of a 20 x 20 lutetium oxyorthosilicate crystal array of 1.51 x 1.51 x 10.0 mm elements. The scintillation light is transmitted to position-sensitive photomultiplier tubes via optical light guides. Energy resolution, spatial resolution, sensitivity, scatter fraction, and counting-rate performance were evaluated. The NEMA NU-4 image-quality phantom and a healthy mouse injected with (18)F-FDG and (18)F(-) were scanned to evaluate the imaging capability of the Inveon DPET. RESULTS: The energy resolution at 511 keV was 14.6% on average for the entire system. In-plane radial and tangential resolutions reconstructed with Fourier rebinning and filtered backprojection algorithms were below 1.8-mm full width at half maximum (FWHM) at the center of the field of view. The radial and tangential resolution remained under 2.0 mm, and the axial resolution remained under 2.5-mm FWHM within the central 4-cm diameter of the field of view. The absolute sensitivity of the system was 9.3% for an energy window of 250-625 keV and a timing window of 3.432 ns. At a 350- to 625-keV energy window and a 3.432-ns timing window, the peak noise equivalent counting rate was 1,670 kcps at 130 MBq for the mouse-sized phantom and 590 kcps at 110 MBq for the rat-sized phantom. The scatter fractions at the same acquisition settings were 7.8% and 17.2% for the mouse- and rat-sized phantoms, respectively. The mouse image-quality phantom results demonstrate that for typical mouse acquisitions, the image quality correlates well with the measured performance parameters in terms of image uniformity, recovery coefficients, attenuation, and scatter corrections. CONCLUSION: The Inveon system, compared with previous generations of preclinical PET systems from the same manufacturer, shows significantly improved energy resolution, sensitivity, axial coverage, and counting-rate capabilities. The performance of the Inveon is suitable for successful murine model imaging experiments.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography/instrumentation , Animals , Diagnostic Equipment , Fluorodeoxyglucose F18 , Mice , Phantoms, Imaging , Radiopharmaceuticals
12.
Opt Express ; 17(19): 16681-95, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19770883

ABSTRACT

Bioluminescence imaging is a very sensitive imaging modality, used in preclinical molecular imaging. However, in its planar projection form, it is non-quantitative and has poor spatial resolution. In contrast, bioluminescence tomography (BLT) promises to provide three dimensional quantitative source information. Currently, nearly all BLT reconstruction algorithms in use employ the diffusion approximation theory to determine light propagation in tissues. In this process, several approximations and assumptions that are made severely affect the reconstruction quality of BLT. It is therefore necessary to develop novel reconstruction methods using high-order approximation models to the radiative transfer equation (RTE) as well as more complex geometries for the whole-body of small animals. However, these methodologies introduce significant challenges not only in terms of reconstruction speed but also for the overall reconstruction strategy. In this paper, a novel fully-parallel reconstruction framework is proposed which uses a simplified spherical harmonics approximation (SPN). Using this framework, a simple linear relationship between the unknown source distribution and the surface measured photon density can be established. The distributed storage and parallel operations of the finite element-based matrix make SPN-based spectrally resolved reconstruction feasible at the small animal whole body level. Performance optimization of the major steps of the framework remarkably improves reconstruction speed. Experimental reconstructions with mouse-shaped phantoms and real mice show the effectiveness and potential of this framework. This work constitutes an important advance towards developing more precise BLT reconstruction algorithms that utilize high-order approximations, particularly second-order self-adjoint forms to the RTE for in vivo small animal experiments.


Subject(s)
Algorithms , Luminescent Measurements/methods , Tomography/methods , Animals , Mice , Phantoms, Imaging , Photons
13.
Opt Express ; 17(10): 8062-80, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19434138

ABSTRACT

Through restoration of the light source information in small animals in vivo, optical molecular imaging, such as fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT), can depict biological and physiological changes observed using molecular probes. A priori information plays an indispensable role in tomographic reconstruction. As a type of a priori information, the sparsity characteristic of the light source has not been sufficiently considered to date. In this paper, we introduce a compressed sensing method to develop a new tomographic algorithm for spectrally-resolved bioluminescence tomography. This method uses the nature of the source sparsity to improve the reconstruction quality with a regularization implementation. Based on verification of the inverse crime, the proposed algorithm is validated with Monte Carlo-based synthetic data and the popular Tikhonov regularization method. Testing with different noise levels and single/multiple source settings at different depths demonstrates the improved performance of this algorithm. Experimental reconstruction with a mouse-shaped phantom further shows the potential of the proposed algorithm.


Subject(s)
Luminescent Measurements/methods , Tomography/methods , Animals , Computer Simulation , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , Mice , Monte Carlo Method , Phantoms, Imaging , Reproducibility of Results , Spectrum Analysis
14.
Phys Med Biol ; 64(24): 245014, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31747654

ABSTRACT

Delineation of major torso organs is a key step of mouse micro-CT image analysis. This task is challenging due to low soft tissue contrast and high image noise, therefore anatomical prior knowledge is needed for accurate prediction of organ regions. In this work, we develop a deeply supervised fully convolutional network which uses the organ anatomy prior learned from independently acquired contrast-enhanced micro-CT images to assist the segmentation of non-enhanced images. The network is designed with a two-stage workflow which firstly predicts the rough regions of multiple organs and then refines the accuracy of each organ in local regions. The network is trained and evaluated with 40 mouse micro-CT images. The volumetric prediction accuracy (Dice score) varies from 0.57 for the spleen to 0.95 for the heart. Compared to a conventional atlas registration method, our method dramatically improves the Dice of the abdominal organs by 18%-26%. Moreover, the incorporation of anatomical prior leads to more accurate results for small-sized low-contrast organs (e.g. the spleen and kidneys). We also find that the localized stage of the network has better accuracy than the global stage, indicating that localized single organ prediction is more accurate than global multiple organ prediction. With this work, the accuracy and efficiency of mouse micro-CT image analysis are greatly improved and the need for using contrast agent and high x-ray dose is potentially reduced.


Subject(s)
Image Processing, Computer-Assisted/methods , Torso/diagnostic imaging , X-Ray Microtomography/methods , Animals , Heart/diagnostic imaging , Kidney/diagnostic imaging , Mice , Spleen/diagnostic imaging
15.
J Nucl Med ; 60(1): 142-149, 2019 01.
Article in English | MEDLINE | ID: mdl-29903933

ABSTRACT

G8 is a benchtop integrated PET/CT scanner dedicated to high-sensitivity and high-resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association NU 4-2008 performance where applicable and also assesses the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of 4 flat-panel detectors arranged in a boxlike geometry. Each panel consists of 2 modules of a 26 × 26 pixelated bismuth germanate scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT scanner consisting of a MicroFocus x-ray source and a complementary metal oxide semiconductor detector provides anatomic information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance, and the capability of performing phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast, and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was 9.0% near the center of the field of view. The crystal energy resolution ranged from 15.0% to 69.6% in full width at half maximum (FWHM), with a mean of 19.3% ± 3.7%. The average intrinsic spatial resolution was 1.30 and 1.38 mm FWHM in the transverse and axial directions, respectively. The maximum-likelihood expectation maximization reconstructed image of a point source in air averaged 0.81 ± 0.11 mm FWHM. The peak noise-equivalent count rate for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi), and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high-quality images for molecular imaging-based biomedical research.


Subject(s)
Positron Emission Tomography Computed Tomography/instrumentation , Image Processing, Computer-Assisted , Scattering, Radiation , Signal-To-Noise Ratio
16.
J Nucl Med ; 49(3): 414-21, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18287261

ABSTRACT

UNLABELLED: The combination of small-animal PET/CT scans and conventional imaging methods may enhance the evaluation of in vivo biologic interactions of murine models in the study of prostate cancer metastasis to bone. METHODS: Small-animal PET/CT scans using (18)F-fluoride ion and (18)F-FDG coregistered with high-resolution small-animal CT scans were used to longitudinally assess the formation of osteoblastic, osteolytic, and mixed lesions formed by human prostate cancer cell lines in a severe combined immunodeficient (SCID) mouse tibial injection model. These scans were correlated with plain radiographs, histomorphometry, and soft-tissue measurements. RESULTS: Small-animal PET/CT scans were able to detect biologic activity of cells that induced an osteoblastic lesion 2 wk earlier than on plain radiographs. Furthermore, both the size and the activity of the lesions detected on PET/CT images significantly increased at each successive time point (P < 0.05). (18)F-FDG lesions strongly correlated with soft-tissue measurements, whereas (18)F-fluoride ion activity correlated with bone volume measured on histomorphometric analysis (P < 0.005). Osteolytic lesions were successfully quantified using small-animal CT, whereas lesion sizes measured on (18)F-FDG PET scans also strongly correlated with soft-tissue tumor burden (P < 0.05). In contrast, for mixed lesions, (18)F-fluoride ion and (18)F-FDG PET/CT scans detected only minimal activity. CONCLUSION: (18)F-FDG and (18)F-fluoride ion PET/CT scans can be useful tools in characterizing pure osteolytic and osteoblastic lesions induced by human prostate cancer cell lines. The value of this technology needs further evaluation to determine whether these studies can be used effectively to detect more subtle responses to different treatment regimens in animal models.


Subject(s)
Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Osteolysis/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorine Radioisotopes/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Male , Mice , Mice, SCID , Osteolysis/etiology , Osteolysis/metabolism , Prostatic Neoplasms/complications , Prostatic Neoplasms/metabolism , Radionuclide Imaging , Radiopharmaceuticals , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
17.
Mol Imaging Biol ; 10(1): 40-7, 2008.
Article in English | MEDLINE | ID: mdl-18046609

ABSTRACT

PURPOSE: We report here on a technique to implement high-resolution objects with voxels having variable dimensions (compressed) for the reduction of memory and central processing unit (CPU) requirements in Monte Carlo simulations. The technique, which was implemented in GATE, the GEANT4 application for positron emission tomography/single photon emission computed tomography (PET/SPECT) imaging simulations, was developed in response to our need for realistic high-resolution phantoms for dosimetry calculations. PROCEDURES: A compression algorithm similar to run-length encoding for one-dimensional data streams, was used to fuse together adjacent voxels with identical physical properties. The algorithm was verified by conducting dosimetric calculations and imaging experiments on compressed and uncompressed phantoms. RESULTS: Depending on the initial phantom size and composition, compression ratios of up to 99.9% were achieved allowing memory and CPU reductions of up to 85% and 70%, respectively. The output of the simulations was consistent with respect to the goals for each type of simulation performed (dosimetry and imaging). CONCLUSIONS: The implementation of compressed voxels in GATE allows for significant memory and CPU reduction and is suitable for dosimetry as well as for imaging experiments.


Subject(s)
Algorithms , Computer Simulation , Phantoms, Imaging , Tomography/methods , Animals , Brain , Liver , Mice , Neoplasms/pathology , Positron-Emission Tomography
18.
Chem Commun (Camb) ; (45): 6008-10, 2008 Dec 07.
Article in English | MEDLINE | ID: mdl-19030568

ABSTRACT

Two classes of bulk high-Z polymer composites were prepared, which exhibit scintillation properties for gamma-radiation detection.


Subject(s)
Gamma Rays , Polymers/chemistry , Scintillation Counting , Bismuth/chemistry , Bismuth/radiation effects , Methacrylates/chemistry , Polymers/chemical synthesis , Polymers/radiation effects
19.
IEEE Trans Nucl Sci ; 55(5): 2541-2545, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-25722497

ABSTRACT

The development of a prototype dual-modality optical and PET (OPET) small animal imaging tomograph is underway in the Crump Institute for Molecular Imaging at the University of California Los Angeles. OPET consists of a single ring of six detector modules with a diameter of 3.5 cm. Each detector has an 8 × 8 array of optically isolated BGO scintillators which are coupled to multichannel photomultiplier tubes and open on the front end. The system operates in either PET or optical mode and reconstructs the data sets as 3D tomograms. The detectors are capable of detecting both annihilation events (511 keV) from PET tracers as well as Single Photon Events (SPEs) (2-3 eV) from bioluminescence. Detector channels are readout using a custom multiplex readout scheme and then filtered in analog circuitry using either a γ-ray or SPE specific filter. Shaped pulses are sent to a Digital Signal Processing (DSP) unit for event processing. The DSP unit has 100 MHz Analog-to-Digital Converters on the front-end which send digitized samples to Field Programmable Gate Arrays which are programmed via user configurable algorithms to process PET coincidence events or bioluminescence SPEs. Information determined using DSP includes: event timing, energy determination-discrimination, position determination-lookup, and coincidence processing. Coincidence or SPE events are recorded to an external disk and minimal post processing is required prior to image reconstruction. Initial imaging results from a phantom filled with 18FDG solution and an optical pattern placed on the front end of a detector module in the vicinity of a SPE source are shown.

20.
J Nucl Med ; 59(6): 980-985, 2018 06.
Article in English | MEDLINE | ID: mdl-29326360

ABSTRACT

Inflammatory bowel diseases (IBDs) in humans are characterized in part by aberrant CD4-positive (CD4+) T-cell responses. Currently, identification of foci of inflammation within the gut requires invasive procedures such as colonoscopy and biopsy. Molecular imaging with antibody fragment probes could be used to noninvasively monitor cell subsets causing intestinal inflammation. Here, GK1.5 cys-diabody (cDb), an antimouse CD4 antibody fragment derived from the GK1.5 hybridoma, was used as a PET probe for CD4+ T cells in the dextran sulfate sodium (DSS) mouse model of IBD. Methods: The DSS mouse model of IBD was validated by assessing changes in CD4+ T cells in the spleen and mesenteric lymph nodes (MLNs) using flow cytometry. Furthermore, CD4+ T cell infiltration in the colons of colitic mice was evaluated using immunohistochemistry. 89Zr-labeled GK1.5 cDb was used to image distribution of CD4+ T cells in the abdominal region and lymphoid organs of mice with DSS-induced colitis. Region-of-interest analysis was performed on specific regions of the gut to quantify probe uptake. Colons, ceca, and MLNs were removed and imaged ex vivo by PET. Imaging results were confirmed by ex vivo biodistribution analysis. Results: An increased number of CD4+ T cells in the colons of colitic mice was confirmed by anti-CD4 immunohistochemistry. Increased uptake of 89Zr-maleimide-deferoxamine (malDFO)-GK1.5 cDb in the distal colon of colitic mice was visible in vivo in PET scans, and region-of-interest analysis of the distal colon confirmed increased activity in DSS mice. MLNs from colitic mice were enlarged and visible in PET images. Ex vivo scans and biodistribution confirmed higher uptake in DSS-treated colons (DSS, 1.8 ± 0.40; control, 0.45 ± 0.12 percentage injected dose [%ID] per organ, respectively), ceca (DSS, 1.1 ± 0.38; control, 0.35 ± 0.09 %ID per organ), and MLNs (DSS, 1.1 ± 0.58; control, 0.37 ± 0.25 %ID per organ). Conclusion:89Zr-malDFO-GK1.5 cDb detected CD4+ T cells in the colons, ceca, and MLNs of colitic mice and may prove useful for further investigations of CD4+ T cells in preclinical models of IBD, with potential to guide development of antibody-based imaging in human IBD.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Colitis/diagnostic imaging , Colitis/immunology , Positron Emission Tomography Computed Tomography/methods , Animals , Colitis/pathology , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL