ABSTRACT
Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.
Subject(s)
Cellulose , Cenchrus , Lignin , Deep Eutectic Solvents , Solvents , Ethanol , Biomass , HydrolysisABSTRACT
One of the major concerns for utilizing ionic liquid on an industrial scale is the cost involved in the production. Despite its proven pretreatment efficiency, expenses involved in its usage hinder its utilization. A better way to tackle this limitation could be overcome by studying the recyclability of ionic liquid. The current study has applied the Box-Behnken design (BBD) to optimize the pretreatment condition of rice straw through the usage of 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) as an ionic liquid. The model predicted the operation condition with 5% solid loading at 128.4 °C for 71.83 min as an optimum pretreatment condition. Under the optimized pretreatment condition, the necessity of the best anti-solvent was evaluated among water, acetone methanol, and their combinations. The study revealed that pure methanol is the suitable choice of anti-solvent, enhancing the highest sugar yield. Recyclability of EMIM-Ac coupled with anti-solvent was conducted up to five recycles following the predicted pretreatment condition. Fermentation studies evaluated the efficacy of recycled EMIM-Ac for ethanol production with 89% more ethanol production than the untreated rice straw even after five recycles. This study demonstrates the potential of recycled ionic liquid in ethanol production, thereby reducing the production cost at the industrial level.
ABSTRACT
Wax is an organic compound found on the surface of lignocellulose biomass to protect plants from physical and biological stresses in nature. With its small mass fraction in biomass, wax has been neglected from inclusion in the design of the biorefinery process. This study investigated the interfering effect of wax in three types of lignocellulosic biomass, including rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). In this study, although small fractions of wax were extracted from RS, NG, and SB at 0.57%, 0.61%, and 1.69%, respectively, dewaxing causes changes in the plant compositions and their functional groups and promotes dissociations of lignocellulose fibrils. Additionally, dewaxing of biomass samples increased reducing sugar by 1.17-, 1.04-, and 1.35-fold in RS, NG, and SB, respectively. The ethanol yield increased by 1.11-, 1.05-, and 1.23-fold after wax removal from RS, NG, and SB, respectively. The chemical composition profiles of the waxes obtained from RS, NG, and SB showed FAME, alcohol, and alkane as the major groups. According to the conversion rate of the dewaxing process and ethanol fermentation, the wax outputs of RS, NG, and SB are 5.64, 17.00, and 6.00 kg/ton, respectively. The current gasoline price is around USD 0.903 per liter, making ethanol more expensive than gasoline. Therefore, in order to reduce the cost of ethanol in the biorefinery industry, other valuable products (such as wax) should be considered for commercialization. The cost of natural wax ranges from USD 2 to 22 per kilogram, depending on the source of the extracted wax. The wax yields obtained from RS, SB, and NG have the potential to increase profits in the biorefining process and could provide an opportunity for application in a wider range of downstream industries than just biofuels.
ABSTRACT
Background: Lignocellulosic biomass is a renewable, abundant, and inexpensive resource for biorefining process to produce biofuel and valuable chemicals. To make the process become feasible, it requires the use of both efficient pretreatment and hydrolysis enzymes to generate fermentable sugars. Ionic liquid (IL) pretreatment has been demonstrated to be a promising method to enhance the saccharification of biomass by cellulase enzyme; however, the remaining IL in the hydrolysis buffer strongly inhibits the function of cellulase. This study aimed to isolate a potential IL-tolerant cellulase producing bacterium to be applied in biorefining process. Result: One Bacillus sp., MSL2 strain, obtained from rice paddy field soil was isolated based on screening of cellulase assay. Its cellulase enzyme was purified and fractionated using a size exclusion chromatography. The molecular weight of purified cellulose was 48 kDa as revealed by SDS-PAGE and zymogram analysis. In the presence of the IL, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) concentration of 1 M, the cellulase activity retained 77.7% of non-IL condition. In addition, the optimum temperature and pH of the enzyme is 50°C and pH 6.0, respectively. However, this cellulase retained its activity more than 90% at 55°C, and pH 4.0. Kinetic analysis of purified enzyme showed that the Km and Vmax were 0.8 mg/mL and 1000 μM/min, respectively. Conclusion: The characterization of cellulase produced from MSL2 strain was described here. These properties of cellulase made this bacterial strain become potential to be used in the biorefining process.