Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 133(6): 066101, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39178435

ABSTRACT

We study Anderson localization in disordered tight-binding models on hyperbolic lattices. Such lattices are geometries intermediate between ordinary two-dimensional crystalline lattices, which localize at infinitesimal disorder, and Bethe lattices, which localize at strong disorder. Using state-of-the-art computational group theory methods to create large systems, we approximate the thermodynamic limit through appropriate periodic boundary conditions and numerically demonstrate the existence of an Anderson localization transition on the {8,3} and {8,8} lattices. We find unusually large critical disorder strengths, determine critical exponents, and observe a strong finite-size effect in the level statistics.

2.
Phys Rev Lett ; 132(20): 206601, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829096

ABSTRACT

We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining diverse numerical and analytical approaches, we uncover an unconventional scaling in the density of states at low energies, and illuminate a nodal manifold of codimension five in the reciprocal space. The nodal manifold is topologically protected by a nonzero second Chern number, reminiscent of the characterization of Weyl nodes by the first Chern number.

3.
Phys Rev Lett ; 133(6): 061603, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39178454

ABSTRACT

We demonstrate how tabletop settings combining hyperbolic lattices with nonlinear dynamics universally encode aspects of the bulk-boundary correspondence between gravity in anti-de-Sitter (AdS) space and conformal field theory (CFT). Our concrete and broadly applicable holographic toy model simulates gravitational self-interactions in the bulk and features an emergent CFT with nontrivial correlations on the boundary. We measure the CFT data contained in the two- and three-point functions and clarify how a thermal CFT is simulated through an effective black hole geometry. As a concrete example, we propose and simulate an experimentally feasible protocol to measure the holographic CFT using electrical circuits.

4.
Phys Rev Lett ; 121(3): 036403, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085787

ABSTRACT

Electrons in clean macroscopic samples of graphene exhibit an astonishing variety of quantum phases when strong perpendicular magnetic field is applied. These include integer and fractional quantum Hall states as well as symmetry broken phases and quantum Hall ferromagnetism. Here we show that mesoscopic graphene flakes in the regime of strong disorder and magnetic field can exhibit another remarkable quantum phase described by holographic duality to an extremal black hole in two-dimensional anti-de Sitter space. This phase of matter can be characterized as a maximally chaotic non-Fermi liquid since it is described by a complex fermion version of the Sachdev-Ye-Kitaev model known to possess these remarkable properties.

5.
Nat Commun ; 14(1): 622, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739281

ABSTRACT

Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states.

SELECTION OF CITATIONS
SEARCH DETAIL