Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175449

ABSTRACT

During the perinatal period, the bovine mammary epithelial cells of dairy cows exhibit vigorous metabolism and produce large amounts of reactive oxygen species (ROS). The resulting redox balance disruption leads to oxidative stress, one of the main causes of mastitis. Puerarin (PUE) is a natural flavonoid in the root of PUE that has attracted extensive attention as a potential antioxidant. This study first investigated whether PUE could reduce oxidative damage and mastitis induced by hydrogen peroxide (H2O2) in bovine mammary epithelial cells in vitro and elucidated the molecular mechanism. In vitro, BMECs (Bovine mammary epithelial cells) were divided into four treatment groups: Control group (no treatment), H2O2 group (H2O2 stimulation), PUE + H2O2 group (H2O2 stimulation before PUE rescue) and PUE group (positive control). The growth of BMECs in each group was observed, and oxidative stress-related indices were detected. Fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of tightly linked genes, antioxidant genes, and inflammatory factors. The expression of p65 protein was detected by Western blot. In vivo, twenty cows with an average age of 5 years having given birth three times were divided into the normal dairy cow group, normal dairy cow group fed PUE, mastitis dairy cow group fed PUE, and mastitis dairy cow group fed PUE (n = 5). The contents of TNF-α, IL-6, and IL-1ß in milk and serum were detected. In BMECs, the results showed that the PUE treatment increased the activities of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC); ROS and malondialdehyde (MDA) levels were reduced. Thus, PUE alleviated H2O2-induced oxidative stress in vitro. In addition, the PUE treatment eliminated the inhibition of H2O2 on the expression of oxidation genes and tight junction genes, and the enrichment degree of NRF-2, HO-1, xCT, and tight junctions (claudin4, occludin, ZO-1 and symplekin) increased. The PUE treatment also inhibited the expression of NF-κB-associated inflammatory factors (IL-6 and IL-8) and the chemokine CCL5 in H2O2-induced BMECs. In vivo experiments also confirmed that feeding PUE can reduce the expression of inflammatory factors in the milk and serum of lactating dairy cows. In conclusion, PUE can effectively reduce the oxidative stress of bovine mammary epithelial cells, enhance the tight junctions between cells, and play an anti-inflammatory role. This study provides a theoretical basis for PUE prevention and treatment of mastitis and oxidative stress. The use of PUE should be considered as a feed additive in future dairy farming.


Subject(s)
Antioxidants , Mastitis , Humans , Pregnancy , Female , Cattle , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Milk/metabolism , Lactation , Interleukin-6/metabolism , Oxidative Stress , Mastitis/metabolism , Epithelial Cells/metabolism
2.
Nanotechnology ; 32(16): 165705, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33361577

ABSTRACT

To increase the specific surface area, high-density (i.e. number per unit area) Ag nanosheets (ANS) with large electrochemically active surface area and rich edge active sites over Ag plates were synthesized via a facile electrodeposition approach in a double electrode system at a constant current of -1 mA for 1800 s. By adjusting the concentration of H3BO3 (0.5 M, 0.1 M and 0.05 M), which is used to control the growth direction of ANS, ANS-20, -50, -350 were obtained with varying thickness of 20 nm, 50 nm, and 350 nm, respectively. Notably, ANS-20 showed a remarkable current density of -6.48 mA cm-2 at -0.9 V versus the reversible hydrogen electrode (RHE), which is almost 1.6 and 2.4 times as high as those of ANS-50 and -350, respectively. Furthermore, ANS-20 exhibits the best CO selectivity of 91.2% at -0.8 V versus RHE, while the other two give 84.6% and 77.9% at the same potential. The excellent performance of ANS-20 is attributed to its rich edge active sites and large electrochemically active surface area (ECSA).

3.
Nanotechnology ; 33(12)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34902843

ABSTRACT

Noble metal aerogels (NMAs) have been used in a variety of (photo-)electrocatalytic reactions, but pure Au aerogel (AG) has not been used in CO2electroreduction to date. To explore the potential application in this direction, AG was prepared to be used as the cathode in CO2electroreduction to CO. However, the gelation time of NMAs is usually very long, up to several weeks. Here, an excess NaBH4and turbulence mixing-promoted gelation approach was developed by introducing magnetic stirring as an external force field, which therefore greatly shortened the formation time of Au gels to several seconds. The AG-3 (AG with Au loading of 0.003 g) exhibited a high CO Faradaic efficiency (FE) of 95.6% at an extremely low overpotential of 0.39 V, and over 91% of CO FE was reached in a wide window of -0.4 to -0.7 V versus the reversible hydrogen electrode (RHE). Partial current density in CO was measured to be -19.35 mA cm-2at -0.8 V versus RHE under 1 atm of CO2. The excellent performance should be ascribed to its porous structure, abundant active sites, and large electrochemical active surface area. It provides a new method for preparation of AG with ultrafast gelation time and large production at room temperature, and the resulting pure AG was for the first time used in the field of CO2electroreduction.

4.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948427

ABSTRACT

Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-ß), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.


Subject(s)
Adipogenesis , Autophagy , Cell Proliferation , Fibroblasts/metabolism , Myoblasts/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction , 3T3 Cells , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , Cells, Cultured , Diacylglycerol O-Acyltransferase/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/physiology , Gene Expression Regulation , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Metabolism , Mice , Myoblasts/physiology , PPAR gamma/genetics , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Stearoyl-CoA Desaturase/genetics , TOR Serine-Threonine Kinases/genetics
5.
J Reprod Dev ; 66(6): 555-562, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33055461

ABSTRACT

Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that supplementation with 10 µM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and provides new applications for improving the quality of in vitro-developed embryos.


Subject(s)
Abietanes/pharmacology , Embryonic Development/drug effects , Reactive Oxygen Species , Animals , Apoptosis , Blastocyst/cytology , Cell Proliferation , Culture Media , Embryo Culture Techniques , Female , Gene Expression Profiling , Gene Expression Regulation , Glutathione/metabolism , In Vitro Oocyte Maturation Techniques/methods , Membrane Potential, Mitochondrial , Oxidative Stress , Parthenogenesis , Pregnancy , Pregnancy, Animal , Swine
6.
Asian-Australas J Anim Sci ; 33(1): 166-176, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31208171

ABSTRACT

OBJECTIVE: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. METHODS: Eighteen normal-grade male weanling Japanese White Rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (Day 37 to 65) and young stage (Day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. RESULTS: The addition of L-Arg and NCG were able to enhance the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake, daily weight gain. Both L-Arg and NCG were able to increase the concentration of IgA, IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height and V/C index, reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. CONCLUSION: L-Arg and NCG have promotional ability on the growth and immunity of weanling and young Japanese White Rabbits, as well as their effects on the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

7.
Am J Physiol Cell Physiol ; 317(6): C1183-C1193, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31532716

ABSTRACT

Dual-specificity phosphatase 1 (DUSP1) is differentially expressed in cumulus cells of different physiological states, but its specific function and mechanism of action remain unclear. In this study, we explored the effects of DUSP1 expression inhibition on cell cycle progression, proliferation, apoptosis, and lactate and cholesterol levels in cumulus cells and examined reactive oxygen species levels, mitochondrial function, autophagy, and the expression of key cytokine genes. The results showed that inhibition of DUSP1 in cumulus cells caused abnormal cell cycle progression, increased cell proliferation, decreased apoptosis rates, increased cholesterol synthesis and lactic acid content, and increased cell expansion. The main reason for these effects was that inhibition of DUSP1 reduced ROS accumulation, increased glutathione level and mitochondrial membrane potential, and reduced autophagy levels in cells. These results indicate that DUSP1 limits the biological function of bovine cumulus cells under normal physiological conditions and will greatly contribute to further explorations of the physiological functions of cumulus cells and the interactions of the cumulus-oocyte complex.


Subject(s)
Apoptosis/genetics , Cell Cycle/genetics , Cumulus Cells/metabolism , Dual Specificity Phosphatase 1/genetics , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Animals , Autophagy/genetics , Cattle , Cell Proliferation/genetics , Cholesterol/metabolism , Cumulus Cells/cytology , Dual Specificity Phosphatase 1/antagonists & inhibitors , Dual Specificity Phosphatase 1/metabolism , Female , Gene Expression Regulation , Glutathione/metabolism , Lactic Acid/metabolism , Membrane Potential, Mitochondrial/genetics , Oxidative Stress , Primary Cell Culture , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
8.
Cytogenet Genome Res ; 158(3): 133-144, 2019.
Article in English | MEDLINE | ID: mdl-31272101

ABSTRACT

Bone morphogenetic protein 2 (BMP2) can mediate the signaling of R-Smads and regulate different biological functions, including adipocyte differentiation. Long noncoding RNAs (lncRNAs) can be involved in many important biological processes, including fat metabolism, as miRNA sponges. This study aimed to investigate the molecular mechanism of fat deposition and to provide useful information for the prevention and treatment of lipid-related diseases. lncRNA sequencing was performed to compare and analyze, for the first time, the expression of lncRNAs in BMP2-induced and non-BMP2-induced preadipocytes from Junmu1 pigs. In addition, functional annotation and enrichment analysis of differentially expressed lncRNA target genes were carried out. lncRNAs and mRNAs were compared and analyzed. lncRNAs were identified that may regulate adipogenesis and lipid metabolism. The results give a theoretical basis for further studies on fat deposition mechanisms and provide potential therapeutic targets for metabolic diseases.


Subject(s)
Adipocytes/drug effects , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/drug effects , RNA, Long Noncoding/analysis , Stem Cells/drug effects , Swine/genetics , Transcriptome/genetics , Adipocytes/cytology , Adipocytes/metabolism , Animals , RNA, Long Noncoding/genetics , Sequence Analysis, RNA , Stem Cells/cytology , Stem Cells/metabolism , Triglycerides/metabolism
9.
Cell Physiol Biochem ; 46(1): 213-225, 2018.
Article in English | MEDLINE | ID: mdl-29587293

ABSTRACT

BACKGROUND/AIMS: Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), which are secreted by oocytes, are important regulators of follicular growth and development and ovarian function. These two factors can regulate the proliferation and apoptosis of cumulus cells via modulation of the Smad signaling pathway. Studies have shown that BMP15 and GDF9 can affect the level of miR-375, whereas the target gene of miR-375 is BMPR2, the type II receptor of BMP15 and GDF9. However, whether or how the BMP15/ GDF9-miR-375-BMPR2 pathway affects the proliferation and apoptosis of bovine cumulus cells through regulation of the Smad signaling pathway remains unclear. METHODS: In this study, cumulus cells were first obtained from cumulus-oocyte complexes (COCs). Appropriate concentrations of BMP15 and GDF9 were added during the in vitro culture process. Cell Counting Kit-8 (CCK-8) analyses and flow cytometry were used to determine the effects of BMP15/GDF9 on bovine cumulus cells proliferation and apoptosis. Subsequently, miR-375 mimics, miR-375 inhibitor and BMPR2 siRNA were synthesized and used for transfection experiments. Western Blot analysis was used to detect changes before and after transfection in the expression levels of the BMP15/GDF9 type I receptors ALK4, ALK5 and ALK6; the phosphorylation levels of Smad2/3 and Smad1/5/8, which are key signaling pathway proteins downstream of BMP15/GDF9; the expression levels of PTX3, HAS2 and PTGS2, which are key genes involved in cumulus cells proliferation; and Bcl2/Bax, which are genes involved in apoptosis. RESULTS: The addition of 100 ng/mL BMP15 or 200 ng/mL GDF9 or the combined addition of 50 ng/mL BMP15 and 100 ng/mL GDF9 effectively inhibited bovine cumulus cell apoptosis and promoted cell proliferation. BMP15/GDF9 negatively regulated miR-375 expression and positively regulated BMPR2 expression. High levels of miR-375 and inhibition of BMPR2 resulted in increased expression of ALK4 and decreased expression of PTX3, HAS2 and PTGS2, whereas miR-375 inhibition resulted in the opposite results. BMP15 and GDF9 significantly activated the levels of p-Smad2/3 and p-Smad1/5/8, whereas miR-375 inhibited the levels of p-Smad2/3 and p-Smad1/5/8 by negatively regulating BMPR2 and also led to apoptosis. CONCLUSION: BMP15 and GDF9 have synergistic effects and can act through miR-375 to affect the expression levels of type I receptor ALK4 and type II receptor BMPR2 and the activation of Smad signaling pathway, which subsequently affected the proliferation, spread and apoptosis of cumulus cells.


Subject(s)
Bone Morphogenetic Protein 15/pharmacology , Bone Morphogenetic Protein Receptors, Type II/metabolism , Growth Differentiation Factor 9/pharmacology , MicroRNAs/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Activin Receptors, Type I/metabolism , Animals , Antagomirs/metabolism , Apoptosis/drug effects , Bone Morphogenetic Protein Receptors, Type II/antagonists & inhibitors , Bone Morphogenetic Protein Receptors, Type II/genetics , C-Reactive Protein/metabolism , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Cumulus Cells/cytology , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Down-Regulation/drug effects , Female , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Phosphorylation/drug effects , RNA Interference , Serum Amyloid P-Component/metabolism , Up-Regulation/drug effects
10.
Microb Pathog ; 115: 222-226, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29273510

ABSTRACT

Staphylococcus aureus (S. aureus) is a common cause of hospital-acquired infection and has become an epidemic globally. Alpha-haemolysin (α-haemolysin), a pore-forming toxin, is one of the most important virulence factors secreted by most S. aureus strains. α-haemolysin monomers form a 232.4-kDa membrane-inserted heptamer by self-assembling to cause host cell lysis and death. Consequently, α-haemolysin plays a significant role in the pathogenesis of S. aureus, and it could be the target for the treatment of staphylococcal infection. In this study, epigallocatechin gallate (EGCg), a natural compound with little anti-S. aureus activity, was shown to reduce the haemolytic activity of α-haemolysin by inhibiting the self-assembly of the heptamer. When EGCg was added into a co-cultured system of human alveolar epithelial (A549) cells and bacterial suspension, α-haemolysin-induced cell injury was significantly attenuated. These results indicate that EGCg could effectively reduce the cytotoxicity of the toxin by interacting with α-haemolysin. This study provides the basis for the development of anti-virulence drugs for the treatment of S. aureus infection.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Catechin/analogs & derivatives , Hemolysin Proteins/antagonists & inhibitors , Protein Multimerization/drug effects , Staphylococcus aureus/pathogenicity , A549 Cells , Alveolar Epithelial Cells/pathology , Catechin/pharmacology , Cell Line , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/growth & development , Virulence/drug effects
11.
Cell Biol Int ; 41(1): 24-32, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27761969

ABSTRACT

Porcine cumulus cells are localized around oocytes and act as a specific type of granulosa that plays essential roles in the development and maturation of oocytes, the development and atresia of follicles, and the development of embryos. Studies of FAT1 have demonstrated its functions in cell-cell contact, actin dynamics, and cell growth suppression. To understand whether the FAT1 gene affects the apoptosis of porcine cumulus cells and to elucidate the mechanism of this potential action, FAT1 was knocked down using RNA interference. The lack of FAT1 resulted in stable expression of CTNNB, enhanced expression of cleaved CASP3, but decreased the BCL2/BAX ratios at both the mRNA and protein levels. These results indicated that FAT1 inhibited porcine cumulus cell apoptosis via different pathways. Taken together, these data provide new insights into the mechanisms of the association between FAT1 and porcine cumulus cell apoptosis.


Subject(s)
Apoptosis , Cadherins/metabolism , Cumulus Cells/cytology , Cumulus Cells/metabolism , Animals , Cadherins/genetics , Caspase 3/metabolism , Cell Separation , Cells, Cultured , Enzyme Activation , Female , Gene Expression Regulation , Gene Knockdown Techniques , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sus scrofa , bcl-2-Associated X Protein/metabolism
12.
Theriogenology ; 229: 66-74, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39163804

ABSTRACT

Fertilization capacity and embryo survival rate are decreased in postovulatory aging oocytes, which results in a reduced reproductive rate in female animals. However, the key regulatory genes and related regulatory mechanisms involved in the process of postovulatory aging in oocytes remain unclear. In this study, RNA-Seq revealed that 3237 genes were differentially expressed in porcine oocytes between the MII and aging stages (MII + 24 h). The expression level of FOXM1 was increased at the aging stage, and FOXM1 was also observed to be enriched in many key biological processes, such as cell senescence, response to oxidative stress, and transcription, during porcine oocyte aging. Previous studies have shown that FOXM1 is involved in the regulation of various biological processes, such as oxidative stress, DNA damage repair, mitochondrial function, and cellular senescence, which suggests that FOXM1 may play a crucial role in the process of postovulatory aging. Therefore, in this study, we investigated the effects and mechanisms of FOXM1 on oxidative stress, mitochondrial function, DNA damage, and apoptosis during oocyte aging. Our study revealed that aging oocytes exhibited significantly increased ROS levels and significantly decreased GSH, SOD, T-AOC, and CAT levels than did oocytes at the MII stage and that FOXM1 inhibition exacerbated the changes in these levels in aging oocytes. In addition, FOXM1 inhibition increased the levels of DNA damage, apoptosis, and cell senescence in aging oocytes. A p21 inhibitor alleviated the effects of FOXM1 inhibition on oxidative stress, mitochondrial function, and DNA damage and thus alleviated the degree of senescence in aging oocytes. These results indicate that FOXM1 plays a crucial role in porcine oocyte aging. This study contributes to the understanding of the function and mechanism of FOXM1 during porcine oocyte aging and provides a theoretical basis for preventing oocyte aging and optimizing conditions for the in vitro culture of oocytes.


Subject(s)
Cellular Senescence , DNA Damage , Forkhead Box Protein M1 , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/physiology , Oocytes/metabolism , Swine , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Mitochondria/metabolism , Female , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation
13.
Theriogenology ; 226: 387-399, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38821784

ABSTRACT

Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.


Subject(s)
Aging , Gene Expression Profiling , Oocytes , Transcriptome , Animals , Oocytes/metabolism , Oocytes/physiology , Swine/physiology , Swine/genetics , Gene Expression Profiling/veterinary , Female , Ovulation/genetics , Ovulation/physiology , Gene Expression Regulation/physiology
14.
Sci Rep ; 14(1): 9511, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664449

ABSTRACT

It is important to study the bacteria that cause endometritis to identify effective therapeutic drugs for dairy cows. In this study, 20% oxytetracycline was used to treat Holstein cows (n = 6) with severe endometritis. Additional 10 Holstein cows (5 for healthy cows, 5 for cows with mild endometritis) were also selected. At the same time, changes in bacterial communities were monitored by high-throughput sequencing. The results show that Escherichia coli, Staphylococcus aureus and other common pathogenic bacteria could be detected by traditional methods in cows both with and without endometritis. However, 16S sequencing results show that changes in the abundance of these bacteria were not significant. Endometritis is often caused by mixed infections in the uterus. Oxytetracycline did not completely remove existing bacteria. However, oxytetracycline could effectively inhibit endometritis and had a significant inhibitory effect on the genera Bacteroides, Trueperella, Peptoniphilus, Parvimonas, Porphyromonas, and Fusobacterium but had no significant inhibitory effect on the bacterial genera Marinospirillum, Erysipelothrix, and Enteractinococcus. During oxytetracycline treatment, the cell motility, endocrine system, exogenous system, glycan biosynthesis and metabolism, lipid metabolism, metabolism of terpenoids, polyketides, cofactors and vitamins, signal transduction, and transport and catabolism pathways were affected.


Subject(s)
Anti-Bacterial Agents , Endometritis , Oxytetracycline , Uterus , Oxytetracycline/pharmacology , Oxytetracycline/therapeutic use , Animals , Female , Cattle , Endometritis/microbiology , Endometritis/veterinary , Endometritis/drug therapy , Uterus/microbiology , Uterus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/drug therapy , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects
15.
Cell Physiol Biochem ; 31(2-3): 452-61, 2013.
Article in English | MEDLINE | ID: mdl-23548631

ABSTRACT

AIMS: Our study aims to characterize the functions of the ADIPOQ gene in the process of fat deposition of pigs, thereby providing a basis for the use of this gene as a molecular marker for pork quality. METHODS: We used healthy Junmu1 piglets less than 7 days of age to establish an in vitro culture system for porcine preadipocytes. Chemically synthesized short hairpin RNAs (shRNA) were transfected into porcine preadipocytes to silence the expression of the ADIPOQ gene. We monitored preadipocyte differentiation and determined the levels of the adipocyte differentiation transcription factors lipoprotein lipase (LPL), peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid binding protein (AP2) mRNAs to investigate the effects of ADIPOQ on the differentiation of porcine preadipocytes. RESULTS: After transfection, the mRNA and protein levels of the ADIPOQ gene were significantly decreased (P < 0.01), the number of lipid droplets in the adipocytes was significantly reduced, the OD values reflecting the fat content were significantly decreased (P < 0.01), and the levels of LPL, PPARγ and AP2 were significantly reduced (P < 0.01). CONCLUSIONS: These results suggest that interference with ADIPOQ gene expression can inhibit the differentiation of porcine preadipocytes.


Subject(s)
Adipocytes/cytology , Adiponectin/metabolism , RNA Interference , Adipocytes/metabolism , Adiponectin/antagonists & inhibitors , Adiponectin/genetics , Animals , Cell Differentiation , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Meat/analysis , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Swine
16.
Animals (Basel) ; 13(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37238146

ABSTRACT

Chinese Red Steppe Cattle (CRS), a composite cattle breed, is well known for its milk production, high slaughter rate, carcass traits, and meat quality. Nowadays, it is widely bred in Jilin and Hebei Province and the Inner Mongolia Autonomous region. However, the population structure and the genetic basis of prominent characteristics of CRS are still unknown. In this study, we systematically describe their population structure, genetic diversity, and selection signature based on genotyping data from 61 CRS individuals with GGP Bovine 100 K chip. The results showed that CRS cattle had low inbreeding levels and had formed a unique genetic structure feature. Using two complementary methods (including comprehensive haplotype score and complex likelihood ratio), we identified 1291 and 1285 potentially selected genes, respectively. There were 141 genes annotated in common 106 overlapping genomic regions covered 5.62 Mb, including PLAG1, PRKG2, DGAT1, PARP10, TONSL, ADCK5, and BMP3, most of which were enriched in pathways related to muscle growth and differentiation, milk production, and lipid metabolism. This study will contribute to understanding the genetic mechanism behind artificial selection and give an extensive reference for subsequent breeding.

17.
Vet Med Sci ; 9(1): 326-335, 2023 01.
Article in English | MEDLINE | ID: mdl-36446749

ABSTRACT

BACKGROUND: T-box transcription factor 2 (TBX2) is a member of T-box gene family whose members are highly conserved in evolution and encoding genes and are involved in the regulation of developmental processes. The encoding genes play an important role in growth and development. Although TBX2 has been widely studied in cancer cell growth and development, its biological functions in bovine cumulus cells remain unclear. OBJECTIVES: This study aimed to investigate the regulatory effects of TBX2 in bovine cumulus cells. METHODS: TBX2 gene was knockdown with siRNA to clarify the function in cellular physiological processes. Cell proliferation and cycle changes were determined by xCELLigence cell function analyzer and flow cytometry. Mitochondrial membrane potential and autophagy were detected by fluorescent dye staining and immunofluorescence techniques. Western blot and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression changes of proliferation and autophagy-related proteins. Aadenosine triphosphate (ATP) production, glucose metabolism, and cholesterol synthesis of cumulus cells were measured by optical density and chemiluminescence analysis. RESULTS: After inhibition of TBX2, the cell cycle was disrupted. The levels of apoptosis, ratio of light chain 3 beta II/I, and reactive oxygen species were increased. The proliferation, expansion ability, ATP production, and the amount of cholesterol secreted by cumulus cells were significantly decreased. CONCLUSIONS: TBX2 plays important roles in regulating the cells' proliferation, expansion, apoptosis, and autophagy; maintaining the mitochondrial function and cholesterol generation of bovine cumulus cells.


Subject(s)
Autophagy , Cumulus Cells , Female , Animals , Cattle , Cumulus Cells/metabolism , Cell Proliferation , Apoptosis/genetics , Mitochondria , Cholesterol/metabolism , Cholesterol/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology
18.
Animals (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37106877

ABSTRACT

6-Gingerol, the main active ingredient in ginger, exhibits a variety of biological activities, such as antioxidant, anti-inflammatory, and anticancer activities, and can affect cell development. However, the effects of 6-gingerol on mammalian reproductive processes, especially early embryonic development, are unclear. This study explored whether 6-gingerol can be used to improve the quality of in vitro-cultured porcine embryos. The results showed that 5 µM 6-gingerol significantly increased the blastocyst formation rates of porcine early embryos. 6-Gingerol attenuated intracellular reactive oxygen species accumulation and autophagy, increased intracellular glutathione levels, and increased mitochondrial activity. In addition, 6-gingerol upregulated NANOG, SRY-box transcription factor 2, cytochrome c oxidase subunit II, mechanistic target of rapamycin kinase, and RPTOR independent companion of MTOR complex 2 while downregulating Caspase 3, baculoviral IAP repeat containing 5, autophagy related 12, and Beclin 1. Most importantly, 6-gingerol significantly increased the levels of p-extracellular regulated protein kinase 1/2 while reducing the levels of p-c-Jun N-terminal kinase 1/2/3 and p-p38. These results indicate that 6-gingerol can promote the development of porcine early embryos in vitro.

19.
ACS Sens ; 8(5): 2030-2040, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37134009

ABSTRACT

Cardiac troponin I (cTnI) is an extremely sensitive biomarker for early indication of acute myocardial infarction (AMI). However, it still remains a tough challenge for many newly developed cTnI biosensors to achieve superior sensing performance including high sensitivity, rapid detection, and resistance to interference in clinical serum samples. Herein, a novel photocathodic immunosensor toward cTnI sensing has been successfully developed by designing a unique S-scheme heterojunction based on the porphyrin-based covalent organic frameworks (p-COFs) and p-type silicon nanowire arrays (p-SiNWs). In the novel heterojunction, the p-SiNWs are employed as the photocathode platform to acquire a strong photocurrent response. The in situ-grown p-COFs can accelerate the spatial migration rate of charge carriers by forming proper band alignment with the p-SiNWs. The crystalline π-conjugated network of p-COFs with abundant amino groups also promotes the electron transfer and anti-cTnI immobilizing process. The developed photocathodic immunosensor demonstrates a broad detection range of 5 pg/mL-10 ng/mL and a low limit of detection (LOD) of 1.36 pg/mL in clinical serum samples. Besides, the PEC sensor owns several advantages including good stability and superior anti-interference ability. By comparing our results with that of the commercial ELISA method, the relative deviations range from 0.06 to 0.18% (n = 3), and the recovery rates range from 95.4 to 109.5%. This work displays a novel strategy to design efficient and stable PEC sensing platforms for cTnI detection in real-life serums and provides guidance in future clinical diagnosis.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Myocardial Infarction , Porphyrins , Humans , Biosensing Techniques/methods , Immunoassay/methods , Myocardial Infarction/diagnosis
20.
Nutrients ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299390

ABSTRACT

Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarß were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.


Subject(s)
Colitis , Gastrointestinal Microbiome , Female , Mice , Animals , Vitamin A/metabolism , Dysbiosis/metabolism , Colitis/metabolism , Colon/metabolism , Hormones/metabolism , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL