Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37779245

ABSTRACT

Single-cell multiomics techniques have been widely applied to detect the key signature of cells. These methods have achieved a single-molecule resolution and can even reveal spatial localization. These emerging methods provide insights elucidating the features of genomic, epigenomic and transcriptomic heterogeneity in individual cells. However, they have given rise to new computational challenges in data processing. Here, we describe Single-cell Single-molecule multiple Omics Pipeline (ScSmOP), a universal pipeline for barcode-indexed single-cell single-molecule multiomics data analysis. Essentially, the C language is utilized in ScSmOP to set up spaced-seed hash table-based algorithms for barcode identification according to ligation-based barcoding data and synthesis-based barcoding data, followed by data mapping and deconvolution. We demonstrate high reproducibility of data processing between ScSmOP and published pipelines in comprehensive analyses of single-cell omics data (scRNA-seq, scATAC-seq, scARC-seq), single-molecule chromatin interaction data (ChIA-Drop, SPRITE, RD-SPRITE), single-cell single-molecule chromatin interaction data (scSPRITE) and spatial transcriptomic data from various cell types and species. Additionally, ScSmOP shows more rapid performance and is a versatile, efficient, easy-to-use and robust pipeline for single-cell single-molecule multiomics data analysis.


Subject(s)
Genomics , Multiomics , Reproducibility of Results , Chromatin/genetics , Data Analysis
2.
Sci Adv ; 10(30): eado5716, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058769

ABSTRACT

The three-dimensional (3D) organization of chromatin within the nucleus is crucial for gene regulation. However, the 3D architectural features that coordinate the activation of an entire chromosome remain largely unknown. We introduce an omics method, RNA-associated chromatin DNA-DNA interactions, that integrates RNA polymerase II (RNAPII)-mediated regulome with stochastic optical reconstruction microscopy to investigate the landscape of noncoding RNA roX2-associated chromatin topology for gene equalization to achieve dosage compensation. Our findings reveal that roX2 anchors to the target gene transcription end sites (TESs) and spreads in a distinctive boot-shaped configuration, promoting a more open chromatin state for hyperactivation. Furthermore, roX2 arches TES to transcription start sites to enhance transcriptional loops, potentially facilitating RNAPII convoying and connecting proximal promoter-promoter transcriptional hubs for synergistic gene regulation. These TESs cluster as roX2 compartments, surrounded by inactive domains for coactivation of multiple genes within the roX2 territory. In addition, roX2 structures gradually form and scaffold for stepwise coactivation in dosage compensation.


Subject(s)
Chromatin , RNA Polymerase II , X Chromosome , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Animals , RNA, Untranslated/genetics , Gene Expression Regulation , Dosage Compensation, Genetic , Promoter Regions, Genetic , Transcription Initiation Site
3.
Nutrients ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678249

ABSTRACT

Bladder cancer is a highly recurrent disease and a common cause of cancer-related deaths worldwide. Despite recent developments in diagnosis and therapy, the clinical outcome of bladder cancer remains poor; therefore, novel anti-bladder cancer drugs are urgently needed. Natural bioactive substances extracted from marine organisms such as sea cucumbers, scallops, and sea urchins are believed to have anti-cancer activity with high effectiveness and less toxicity. Frondoside A is a triterpenoid glycoside isolated from sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A exhibits anti-proliferative, anti-invasive, anti-angiogenic, anti-cancer, and potent immunomodulatory effects. In addition, CpG oligodeoxynucleotide (CpG-ODN) has also been shown to have potent anti-cancer effects in various tumors models, such as liver cancer, breast cancer, and bladder cancer. However, very few studies have investigated the effectiveness of Frondoside A against bladder cancer alone or in combination with CpG-ODN. In this study, we first investigated the individual effects of both Frondoside A and CpG-ODN and subsequently studied their combined effects on human bladder cancer cell viability, migration, apoptosis, and cell cycle in vitro, and on tumor growth in nude mice using human bladder cancer cell line UM-UC-3. To interrogate possible synergistic effects, combinations of different concentrations of the two drugs were used. Our data showed that Frondoside A decreased the viability of bladder cancer cells UM-UC-3 in a concentration-dependent manner, and its inhibitory effect on cell viability (2.5 µM) was superior to EPI (10 µM). We also showed that Frondoside A inhibited UM-UC-3 cell migration, affected the distribution of cell cycle and induced cell apoptosis in concentration-dependent manners, which effectively increased the sub-G1 (apoptotic) cell fraction. In addition, we also demonstrated that immunomodulator CpG-ODN could synergistically potentiate the inhibitory effects of Frondoside A on the proliferation and migration of human bladder cancer cell line UM-UC-3. In in vivo experiments, Frondoside A (800 µg/kg/day i.p. for 14 days) alone and in combination with CpG-ODN (1 mg/kg/dose i.p.) significantly decreased the growth of UM-UC-3 tumor xenografts, without any significant toxic side-effects; however, the chemotherapeutic agent EPI caused weight loss in nude mice. Taken together, these findings indicated that Frondoside A in combination with CpG-ODN is a promising therapeutic strategy for bladder cancer.


Subject(s)
Antineoplastic Agents , Cardiac Glycosides , Sea Cucumbers , Triterpenes , Urinary Bladder Neoplasms , Animals , Mice , Humans , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glycosides/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Urinary Bladder Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL