Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
PLoS Pathog ; 19(1): e1010961, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36626407

ABSTRACT

CRISPR-based genome editing technology is revolutionizing prokaryotic research, but it has been rarely studied in bacterial plant pathogens. Here, we have developed a targeted genome editing method with no requirement of donor templates for convenient and efficient gene knockout in Xanthomonas oryzae pv. oryzae (Xoo), one of the most important bacterial pathogens on rice, by employing the heterologous CRISPR/Cas12a from Francisella novicida and NHEJ proteins from Mycobacterium tuberculosis. FnCas12a nuclease generated both small and large DNA deletions at the target sites as well as it enabled multiplex genome editing, gene cluster deletion, and plasmid curing in the Xoo PXO99A strain. Accordingly, a non-TAL effector-free polymutant strain PXO99AD25E, which lacks all 25 xop genes involved in Xoo pathogenesis, has been engineered through iterative genome editing. Whole-genome sequencing analysis indicated that FnCas12a did not have a noticeable off-target effect. In addition, we revealed that these strategies are also suitable for targeted genome editing in another bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). We believe that our bacterial genome editing method will greatly expand the CRISPR study on microorganisms and advance our understanding of the physiology and pathogenesis of Xoo.


Subject(s)
CRISPR-Cas Systems , Oryza , Xanthomonas , Bacterial Proteins/metabolism , Gene Editing/methods , Genome, Bacterial , Oryza/microbiology , Plasmids , Xanthomonas/genetics
2.
Article in English | MEDLINE | ID: mdl-38607367

ABSTRACT

An aerobic methanotroph was isolated from a secondary sedimentation tank of a wastewater treatment plant and designated strain OY6T. Cells of OY6T were Gram-stain-negative, pink-pigmented, motile rods and contained an intracytoplasmic membrane structure typical of type I methanotrophs. OY6T could grow at a pH range of 4.5-7.5 (optimum pH 6.5) and at temperatures ranging from 20 °C to 37 °C (optimum 30 °C). The major cellular fatty acids were C14 : 0, C16 : 1ω7c/C16 : 1ω6c and C16 : 1ω5c; the predominant respiratory quinone was MQ-8. The genome size was 5.41 Mbp with a DNA G+C content of 51.7 mol%. OY6T represents a member of the family Methylococcaceae of the class Gammaproteobacteria and displayed 95.74-99.64 % 16S rRNA gene sequence similarity to the type strains of species of the genus Methylomonas. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) confirmed that OY6T should be classified as representing a novel species. The most closely related type strain was Methylomonas fluvii EbBT, with 16S rRNA gene sequence similarity, ANI by blast (ANIb), ANI by MUMmer (ANIm) and dDDH values of 99.64, 90.46, 91.92 and 44.5 %, respectively. OY6T possessed genes encoding both the particulate methane monooxygenase enzyme and the soluble methane monooxygenase enzyme. It grew only on methane or methanol as carbon sources. On the basis of phenotypic, genetic and phylogenetic data, strain OY6T represents a novel species within the genus Methylomonas for which the name Methylomonas defluvii sp. nov. is proposed, with strain OY6T (=GDMCC 1.4114T=KCTC 8159T=LMG 33371T) as the type strain.


Subject(s)
Methylococcaceae , Methylomonas , Methane , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria , Methylococcaceae/genetics , Oxidation-Reduction
3.
Plant Cell Rep ; 43(7): 184, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951262

ABSTRACT

KEY MESSAGE: Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.


Subject(s)
Disease Resistance , Plant Diseases , Quantitative Trait Loci , Solanum lycopersicum , Quantitative Trait Loci/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosome Mapping
4.
PLoS Pathog ; 17(7): e1009762, 2021 07.
Article in English | MEDLINE | ID: mdl-34297775

ABSTRACT

Pathogens integrate multiple environmental signals to navigate the host and control the expression of virulence genes. In this process, small regulatory noncoding RNAs (sRNAs) may function in gene expression as post-transcriptional regulators. In this study, the sRNA Xonc3711 functioned in the response of the rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), to oxidative stress. Xonc3711 repressed production of the DNA-binding protein Xoc_3982 by binding to the xoc_3982 mRNA within the coding region. Mutational analysis showed that regulation required an antisense interaction between Xonc3711 and xoc_3982 mRNA, and RNase E was needed for degradation of the xoc_3982 transcript. Deletion of Xonc3711 resulted in a lower tolerance to oxidative stress due to the repression of flagella-associated genes and reduced biofilm formation. Furthermore, ChIP-seq and electrophoretic mobility shift assays showed that Xoc_3982 repressed the transcription of effector xopC2, which contributes to virulence in Xoc BLS256. This study describes how sRNA Xonc3711 modulates multiple traits in Xoc via signals perceived from the external environment.


Subject(s)
Oxidative Stress/physiology , RNA, Antisense/metabolism , Xanthomonas/pathogenicity , Oryza/parasitology , Plant Diseases/genetics , RNA, Small Untranslated , Virulence/genetics , Xanthomonas/genetics , Xanthomonas/metabolism
5.
Phytopathology ; 113(11): 2073-2082, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37414408

ABSTRACT

Xanthomonas translucens pv. cerealis causes bacterial leaf streak disease on small grain cereals. Type II and III secretion systems (T2SS and T3SS) play a pivotal role in the pathogenicity of the bacterium, while no data are available on the transcriptomic profile of wheat cultivars infected with either wild type (WT) or mutants of the pathogen. In this study, WT, TAL-effector mutants, and T2SS/T3SS mutants of X. translucens pv. cerealis strain NXtc01 were evaluated for their effect on the transcriptomic profile of two wheat cultivars, 'Chinese Spring' and 'Yangmai-158', using Illumina RNA-sequencing technology. RNA-Seq data showed that the number of differentially expressed genes (DEGs) was higher in Yangmai-158 than in Chinese Spring, suggesting higher susceptibility of Yangmai-158 to the pathogen. In T2SS, most suppressed DEGs were related to transferase, synthase, oxidase, WRKY, and bHLH transcription factors. The gspD mutants showed significantly decreased disease development in wheat, suggesting an active contribution of T2SS in virulence. Moreover, the gspD mutant restored full virulence and its multiplication in planta by addition of gspD in trans. In the T3SS-deficient strain, downregulated DEGs were associated with cytochrome, peroxidases, kinases, phosphatases, WRKY, and ethylene-responsive transcription factors. In contrast, upregulated DEGs were trypsin inhibitors, cell number regulators, and calcium transporter. Transcriptomic analyses coupled with quantitative real-time-PCR indicated that some genes are upregulated in Δtal1/Δtal2 compared with the tal-free strain, but no direct interaction was observed. These results provide novel insight into wheat transcriptomes in response to X. translucens infection and pave the way for understanding host-pathogen interactions.


Subject(s)
Triticum , Xanthomonas , Triticum/genetics , Triticum/microbiology , Transcriptome , Plant Diseases/microbiology , Xanthomonas/genetics , Bacterial Proteins/genetics
6.
Phytopathology ; 113(11): 2024-2036, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37069135

ABSTRACT

Bacterial leaf streak of small-grain cereals is an economically important disease of wheat and barley crops. The disease occurs in many countries across the globe, with particular importance in regions characterized by high precipitation or areas in which sprinkler irrigation is used. Three genetically distinct lineages of the Gram-negative bacterium Xanthomonas translucens (X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. cerealis) are responsible for most of the bacterial leaf streak infections on wheat and barley crops. Considering the seedborne nature of the pathogens, they are included in the A2 (high-risk) list of quarantine organisms for some European countries; hence, they are under strict quarantine control and zero tolerance. Due to the taxonomic complexities within X. translucens, the exact geographic distribution of each pathovar has not yet been determined. In this mini review, we provide an updated overview of the detection and diagnosis of the bacterial leaf streak pathogens. First, a short history of the leaf streak pathogens is provided, followed by the symptomology and host range of the causal agents. Then, the utility of conventional methods and high-throughput molecular approaches in the precise detection and identification of the pathogens is explained. Finally, we highlight the role of quarantine inspections and early detection of the pathogen in combating the risk of bacterial leaf streak in the 21st century's small-grains cereals' industry.


Subject(s)
Edible Grain , Hordeum , Plant Diseases/prevention & control , Plant Diseases/microbiology , Hordeum/microbiology , Triticum/microbiology , Host Specificity
7.
PLoS Pathog ; 16(8): e1008740, 2020 08.
Article in English | MEDLINE | ID: mdl-32822429

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation-coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress.


Subject(s)
Bacterial Proteins/genetics , RNA Editing , Xanthomonas/genetics , Xanthomonas/metabolism , Adenosine/genetics , Adenosine/metabolism , Bacterial Proteins/metabolism , Hydrogen Peroxide/pharmacology , Inosine/genetics , Inosine/metabolism , Oxidative Stress/drug effects , Plant Diseases/microbiology , Virulence/drug effects , Xanthomonas/drug effects , Xanthomonas/pathogenicity
8.
Phytopathology ; 112(3): 492-500, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34420356

ABSTRACT

Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-Xanthomonas oryzae pv. oryzae interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent X. oryzae pv. oryzae strain PXO99A by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99A invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99A interaction.


Subject(s)
Oryza , Xanthomonas , Bacterial Proteins/genetics , Oryza/genetics , Plant Diseases/genetics , RNA, Circular/genetics
9.
J Integr Plant Biol ; 64(10): 1994-2008, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35972796

ABSTRACT

Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas oryzae pv. oryzicola (Xoc), which is the causal agent of rice bacterial leaf streak disease, drastically increased in transgenic rice (Oryza sativa L.) plants overexpressing the Xoc T3E gene XopAP, which encodes a protein annotated as a lipase. We discovered that XopAP binds to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ), a membrane phospholipid that functions in pH control in lysosomes, membrane dynamics, and protein trafficking. XopAP inhibited the acidification of vacuoles by competing with vacuolar H+ -pyrophosphatase (V-PPase) for binding to PtdIns(3,5)P2 , leading to stomatal opening. Transgenic rice overexpressing XopAP also showed inhibition of stomatal closure when challenged by Xoc infection and treatment with the PAMP flg22. Moreover, XopAP suppressed flg22-induced gene expression, reactive oxygen species burst and callose deposition in host plants, demonstrating that XopAP subverts PAMP-triggered immunity during Xoc infection. Taken together, these findings demonstrate that XopAP overcomes stomatal immunity in plants by binding to lipids.


Subject(s)
Oryza , Xanthomonas , Pathogen-Associated Molecular Pattern Molecules/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Salicylic Acid/metabolism , Inorganic Pyrophosphatase/metabolism , Hydrogen-Ion Concentration , Phosphatidylinositols/metabolism , Lipase/metabolism , Phospholipids/metabolism
10.
J Exp Bot ; 72(8): 3249-3262, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33544818

ABSTRACT

Xa1-mediated resistance to rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is triggered by transcription activator-like effectors (TALEs) and suppressed by interfering TALEs (iTALEs). TALEs interact with the rice transcription factor OsTFIIAγ1 or OsTFIIAγ5 (Xa5) to activate expression of target resistance and/or susceptibility genes. However, it is not clear whether OsTFIIAγ is involved in TALE-triggered and iTALE-suppressed Xa1-mediated resistance. In this study, genome-edited mutations in OsTFIIAγ5 or OsTFIIAγ1 of Xa1-containing rice 'IRBB1' and Xa1-transgenic plants of xa5-containing rice 'IRBB5' did not impair the activation or suppression of Xa1-mediated resistance. Correspondingly, the expression pattern of Xa1 in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines and 'IRBB1' rice was similar. In contrast, the expression of OsSWEET11 was repressed in rice lines mutated in OsTFIIAγ5 and OsTFIIAγ1. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation assays showed that both TALE PthXo1 and iTALE Tal3a interacted with OsTFIIAγ1 and OsTFIIAγ5 in plant nuclei. These results indicated that TALE-triggered and iTALE-suppressed Xa1-mediated resistance to bacterial blight is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice, and suggest that an unknown factor is potentially involved in the interaction of Xa1, TALEs and iTALEs.


Subject(s)
Disease Resistance , Oryza , Plant Diseases/microbiology , Transcription Factors , Xanthomonas , Disease Resistance/genetics , Oryza/genetics , Plant Diseases/genetics , Plant Proteins , Plants, Genetically Modified , Transcription Factors/genetics
11.
Phytopathology ; 111(2): 268-280, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32716255

ABSTRACT

Bacterial wilt of dry beans (family Fabaceae) caused by the actinobacterial agent Curtobacterium flaccumfaciens pv. flaccumfaciens is one of the most important diseases threatening edible legume production around the globe. Despite the economic losses due to the bacterial wilt disease, the pathogen has not so far been investigated for its genomic features, pathogenicity determinants, and virulence strategies. Here we present the first complete genome sequence of a highly virulent bacteriocin-producing C. flaccumfaciens pv. flaccumfaciens strain P990. The bacterium has a circular chromosome consisting of 3,736 kbp with the G+C% content of 71.0%. Furthermore, a 147-kbp circular plasmid (pCff1) with 66.1% G+C% content as well as two circular plasmid-like DNAs with sizes of 25 and 22 kbp were detected within the genomic contents of C. flaccumfaciens pv. flaccumfaciens. Phylogenetic analyses revealed that only a few number of Curtobacterium sp. strains deposited in the public databases could be classified within the species C. flaccumfaciens. Comparative genomics of C. flaccumfaciens pv. flaccumfaciens using the genome sequences of actinobacterial plant pathogens revealed the presence of a set of unique low G+C% content genomic islands in the C. flaccumfaciens pv. flaccumfaciens genome. Homologs of pathogenicity-determinant loci capable of producing 1,4-beta-xylanase (xysA), pectate lyase (pelA1 and pelA2), serine protease (chpC, chpG, and pat-1), and sortase (srtA) were detected in C. flaccumfaciens pv. flaccumfaciens genome. The genomic data presented here extend our understanding of the C. flaccumfaciens pv. flaccumfaciens genomic features and pave the ways of research on functional and interaction genetics to combat the risk of bacterial wilt disease in the 21st century's dry bean industry.


Subject(s)
Fabaceae , Plant Diseases , Actinobacteria , Genome, Bacterial/genetics , Phylogeny , Virulence , Whole Genome Sequencing
12.
Phytopathology ; 111(2): 425-428, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32720877

ABSTRACT

Pseudomonas is a complex genus with increasing numbers of new species. Recently, we isolated Pseudomonas sp. strain L22-9, which showed antifungal activity against several fungal phytopathogens. Here, we report the whole genome sequence of strain L22-9. Genomic analysis revealed that strain L22-9 contains one circular DNA chromosome of 6,730,360 bp length with 60.9% GC content. Bioinformatics analysis identified gene clusters in the genome that synthesize antimicrobial metabolites such as 2,4-diacetylphloroglucinol synthesis and hydrogen cyanide synthase. Further analysis suggests that strain L22-9 is a novel species of the genus Pseudomonas. This genome would be a valuable resource for future research in phytopathology.


Subject(s)
Antifungal Agents , Pseudomonas , Antifungal Agents/pharmacology , Fungi , Genome, Bacterial/genetics , Phylogeny , Plant Diseases , Pseudomonas/genetics
13.
BMC Microbiol ; 20(1): 91, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32293266

ABSTRACT

BACKGROUND: Bacterial blight of cotton (BBC), which is caused by the bacterium Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease in cotton. Transcription activator-like effectors (TALEs), encoded by tal-genes, play critical roles in the pathogenesis of xanthomonads. Characterized strains of cotton pathogenic Xcm harbor 8-12 different tal genes and only one of them is functionally decoded. Further identification of novel tal genes in Xcm strains with virulence contributions are prerequisite to decipher the Xcm-cotton interactions. RESULTS: In this study, we identified six tal genes in Xss-V2-18, a highly-virulent strain of Xcm from China, and assessed their role in BBC. RFLP-based Southern hybridization assays indicated that Xss-V2-18 harbors the six tal genes on a plasmid. The plasmid-encoded tal genes were isolated by cloning BamHI fragments and screening clones by colony hybridization. The tal genes were sequenced by inserting a Tn5 transposon in the DNA encoding the central repeat region (CRR) of each tal gene. Xcm TALome evolutionary relationship based on TALEs CRR revealed relatedness of Xss-V2-18 to MSCT1 and MS14003 from the United States. However, Tal2 of Xss-V2-18 differs at two repeat variable diresidues (RVDs) from Tal6 and Tal26 in MSCT1 and MS14003, respectively, inferred functional dissimilarity. The suicide vector pKMS1 was then used to construct tal deletion mutants in Xcm Xss-V2-18. The mutants were evaluated for pathogenicity in cotton based on symptomology and growth in planta. Four mutants showed attenuated virulence and all contained mutations in tal2. One tal2 mutant designated M2 was further investigated in complementation assays. When tal2 was introduced into Xcm M2 and expressed in trans, the mutant was complemented for both symptoms and growth in planta, thus indicating that tal2 functions as a virulence factor in Xcm Xss-V2-18. CONCLUSIONS: Overall, the results demonstrated that Tal2 is a major pathogenicity factor in Xcm strain Xss-V2-18 that contributes significantly in BBC. This study provides a foundation for future efforts aimed at identifying susceptibility genes in cotton that are targeted by Tal2.


Subject(s)
Gossypium/microbiology , Sequence Analysis, DNA/methods , Transcription Activator-Like Effectors/genetics , Xanthomonas/pathogenicity , Bacterial Proteins/genetics , China , DNA Transposable Elements , Gossypium/growth & development , INDEL Mutation , Phylogeny , Plant Diseases/microbiology , Plasmids/genetics , Polymorphism, Restriction Fragment Length , Virulence Factors/genetics , Xanthomonas/genetics
14.
Phytopathology ; 110(4): 758-767, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31868568

ABSTRACT

Bacterial leaf streak caused by different pathovars of Xanthomonas translucens is the most important seedborne bacterial disease of small grain cereals. However, variations in the virulence-associated genomic areas of the pathogen remain uninvestigated. In this study, the diversity of transcription activator-like effectors (TALE) was investigated using the Southern blotting of BamHI-digested genomic DNAs in the Iranian strains of X. translucens. All 65 X. translucens strains were assigned into 13 genotypes, where 57 X. translucens pv. undulosa strains were placed in genotypes 1 to 8, and seven X. translucens pv. translucens strains were placed in genotypes 9 to 12. Interestingly, we did not find any TALE genes in the strain XtKm7 (genotype 13), which showed to be pathogenic only on barley. Virulence and aggressiveness of these strains in greenhouse conditions were in agreement with the TALE-based clustering of the strains in the pathovar level, though variations were observed in the aggressiveness of X. translucens pv. undulosa strains. In general, strains containing higher numbers of putative TALE genes were more virulent on wheat and barley than strains containing fewer. This is the first TALE-based genetic diversity analysis on X. translucens strains and provides novel insights into the virulence repertories and genomic characteristics of the pathogen. Further investigations using TALE mutagenesis and complementation analysis are warranted to precisely elucidate the role of each detected X. translucens TALE in bacterial virulence and aggressiveness either on wheat or barley.


Subject(s)
Xanthomonas , Iran , Plant Diseases , Transcription Activator-Like Effectors
15.
Plant Dis ; 104(11): 2764-2767, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32897843

ABSTRACT

Xanthomonas oryzae pv. oryzae is the causative agent of bacterial blight of rice and causes severe harvest loss and challenges to a stable food supply globally. In this study, a hypervirulent strain, LN4, compatible in rice varieties carrying Xa3, Xa4, xa13, and xa25 resistance genes, was used to generate DNA for nanopore sequencing. After assembly, the genome comprises a single chromosome of 5,012,583 bp, consisting of a total of 6,700 predicted coding sequences. Seventeen transcription activator-like effectors (TALEs) were encoded in the genome, of which two (Tal7 and Tal6c) were major TALEs. The approach and genome data provide information for the discovery of new virulence effectors and understanding of the virulence mechanism of TALEs in rice.


Subject(s)
Oryza , Xanthomonas , Plant Diseases , Transcription Activator-Like Effectors , Xanthomonas/genetics
16.
Plant Dis ; 104(6): 1578-1580, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32282280

ABSTRACT

Burkholderia glumae is a seedborne pathogen causing bacterial panicle blight of rice. Here, we report the complete genome of B. glumae strain GX, which represents the first whole-genome sequence of an isolate from China. The assembled genome consisted of five contigs, with two circular chromosomes of 3,712,850 and 2,750,046 bp and three plasmids of 201,571, 105,587, and 96,100 bp. This complete genome will provide a valuable resource for further studies on bacterial panicle blight worldwide.


Subject(s)
Burkholderia , Oryza , China , Genomics
17.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31420337

ABSTRACT

This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding's grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding's grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen.IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads-namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens-have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


Subject(s)
Edible Grain/microbiology , Genetic Variation , Multilocus Sequence Typing , Plant Diseases/microbiology , Xanthomonas/genetics , Iran
18.
Article in English | MEDLINE | ID: mdl-33528346

ABSTRACT

Strain L22-9T, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a Pseudomonas species. Multilocus sequence analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences showed that strain L22-9T formed a clearly separated branch, located in a cluster together with Pseudomonas brassicacearum LMG 21623T, Pseudomonas kilonensis DSM 13647T and Pseudomonas thivervalensis DSM 13194T. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) confirmed that strain L22-9T should be classified as a novel species. It was most closely related to P. kilonensis DSM 13647T with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9T from P. kilonensis DSM 13647T are the assimilation ability of N-acetyl-d-glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and d-fucose. The predominant cellular fatty acids of strain L22-9T are C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9T represents a novel species, for which the name Pseudomonas bijieensis sp. nov. is proposed. The type strain is L22-9T (=CGMCC 1.18528T=LMG 31948T), with a DNA G+C content of 60.85 mol%.

19.
Phytopathology ; 109(7): 1171-1183, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30730787

ABSTRACT

The global regulator Crp-like protein (Clp) is positively involved in the production of virulence factors in some of the Xanthomonas spp. However, the functional importance of Clp in X. axonopodis pv. glycines has not been investigated previously. Here, we showed that deletion of clp led to significant reduction in the virulence of X. axonopodis pv. glycines in soybean, which was highly correlated with the drastic reductions in carbohydrates utilization, extracellular polysaccharide (EPS) production, biofilm formation, cell motility, and synthesis of cell wall degrading enzymes (CWDEs). These significantly impaired properties in the clp mutant were completely rescued by a single-copy integration of the wild-type clp into the mutant chromosome via homologous recombination. Interestingly, overexpression of clp in the wild-type strain resulted in significant increases in cell motility and synthesis of the CWDEs. To our surprise, significant reductions in carbohydrates utilization, EPS production, biofilm formation, and the protease activity were observed in the wild-type strain overexpressing clp, suggesting that Clp also plays a negative role in these properties. Furthermore, quantitative reverse transcription polymerase chain reaction analysis suggested that clp was positively regulated by the diffusible signal factor-mediated quorum-sensing system and the HrpG/HrpX cascade. Taken together, our results reveal that Clp functions as both activator and repressor in multiple biological processes in X. axonopodis pv. glycines that are essential for its full virulence.


Subject(s)
Xanthomonas axonopodis , Xanthomonas , Glycine , Plant Diseases/microbiology , Virulence , Xanthomonas axonopodis/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL