Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
EMBO J ; 38(14): e101260, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31304630

ABSTRACT

Tissue-resident iNKT cells maintain tissue homeostasis and peripheral surveillance against pathogens; however, studying these cells is challenging due to their low abundance and poor recovery from tissues. We here show that iNKT transnuclear mice, generated by somatic cell nuclear transfer, have increased tissue resident iNKT cells. We examined expression of PLZF, T-bet, and RORγt, as well as cytokine/chemokine profiles, and found that both monoclonal and polyclonal iNKT cells differentiated into functional subsets that faithfully replicated those seen in wild-type mice. We detected iNKT cells from tissues in which they are rare, including adipose, lung, skin-draining lymph nodes, and a previously undescribed population in Peyer's patches (PP). PP-NKT cells produce the majority of the IL-4 in Peyer's patches and provide indirect help for B-cell class switching to IgG1 in both transnuclear and wild-type mice. Oral vaccination with α-galactosylceramide shows enhanced fecal IgG1 titers in iNKT cell-sufficient mice. Transcriptional profiling reveals a unique signature of PP-NKT cells, characterized by tissue residency. We thus define PP-NKT as potentially important for surveillance for mucosal pathogens.


Subject(s)
Gene Expression Profiling/methods , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Natural Killer T-Cells/metabolism , Peyer's Patches/immunology , Animals , Cell Differentiation , Cells, Cultured , Female , Galactosylceramides/administration & dosage , Galactosylceramides/immunology , Interleukin-4/genetics , Mice , Natural Killer T-Cells/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Transfer Techniques , Promyelocytic Leukemia Zinc Finger Protein/genetics , T-Box Domain Proteins/genetics , Vaccination
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674776

ABSTRACT

Growth-regulating factor (GRF) is a kind of transcription factor unique to plants, playing an important role in the flowering regulation, growth, and development of plants. Melastoma dodecandrum is an important member of Melastomataceae, with ornamental, medicinal, and edible benefits. The identification of the GRF gene family in M. dodecandrum can help to improve their character of flavor and continuous flowering. The members of the GRF gene family were identified from the M. dodecandrum genome, and their bioinformatics, selective pressure, and expression patterns were analyzed. The results showed that there were 20 GRF genes in M. dodecandrum. Phylogenetic analysis showed that the 71 GRF genes from M. dodecandrum, Arabidopsis thaliana, Camellia sinensis, and Oryza sativa can be divided into three clades and six subclades. The 20 GRF genes of M. dodecandrum were distributed in twelve chromosomes and one contig. Furthermore, the gene structure and motif analysis showed that the intron and motif within each clade were very similar, but there were great differences among different clades. The promoter contained cis-acting elements related to hormone induction, stress, and growth and development. Different transcriptomic expression of MdGRFs indicated that MdGRFs may be involved in regulating the growth and development of M. dodecandrum. The results laid a foundation for further study on the function and molecular mechanism of the M. dodecandrum GRF gene family.


Subject(s)
Melastomataceae , Melastomataceae/chemistry , Phylogeny , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762519

ABSTRACT

WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein-protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions.


Subject(s)
Genes, Homeobox , Nelumbo , Nelumbo/genetics , Phylogeny , Transcription Factors/genetics , Plant Development
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835586

ABSTRACT

The YABBY gene family plays an important role in plant growth and development, such as response to abiotic stress and lateral organ development. YABBY TFs are well studied in numerous plant species, but no study has performed a genome-wide investigation of the YABBY gene family in Melastoma dodecandrum. Therefore, a genome-wide comparative analysis of the YABBY gene family was performed to study their sequence structures, cis-acting elements, phylogenetics, expression, chromosome locations, collinearity analysis, protein interaction, and subcellular localization analysis. A total of nine YABBY genes were found, and they were further divided into four subgroups based on the phylogenetic tree. The genes in the same clade of phylogenetic tree had the same structure. The cis-element analysis showed that MdYABBY genes were involved in various biological processes, such as cell cycle regulation, meristem expression, responses to low temperature, and hormone signaling. MdYABBYs were unevenly distributed on chromosomes. The transcriptomic data and real-time reverse transcription quantitative PCR (RT-qPCR) expression pattern analyses showed that MdYABBY genes were involved in organ development and differentiation of M. dodecandrum, and some MdYABBYs in the subfamily may have function differentiation. The RT-qPCR analysis showed high expression of flower bud and medium flower. Moreover, all MdYABBYs were localized in the nucleus. Therefore, this study provides a theoretical basis for the functional analysis of YABBY genes in M. dodecandrum.


Subject(s)
Flowers , Plant Proteins , Phylogeny , Plant Proteins/genetics , Flowers/genetics , Multigene Family , Meristem/metabolism , Gene Expression Regulation, Plant , Evolution, Molecular , Stress, Physiological , Gene Expression Profiling
5.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743113

ABSTRACT

Sacred lotus (Nelumbo nucifera) is an aquatic perennial plant with essential food, ornamental, and pharmacological value. Growth-regulating factor (GRF) is a transcription factor (TF) family that plays an important role in regulating the growth and development of plants. In this study, a comprehensive analysis of the GRF family in N. nucifera was performed, and its role in N. nucifera development was studied. A total of eight GRF genes were identified in the N. nucifera genome. Phylogenetic analysis divided the 38 GRF genes into six clades, while the NuGRFs only contained five clades. The analyses of gene structures, motifs, and cis-acting regulatory elements of the GRF gene family were performed. In addition, the chromosome location and collinearity were analyzed. The expression pattern based on transcriptomic data and real-time reverse transcription-quantitative PCR (qRT-PCR) revealed that the GRF genes were expressed in multiple organs and were abundant in actively growing tissues, and the expression levels decreased as the age of N. nucifera increased. Then, 3D structures of the NuGRF proteins were predicted by homology modeling. Finally, the subcellular localization of GRF1 was ascertained in the tobacco leaf through a vector. Therefore, this study provides a comprehensive overview of the GRF TF family in N. nucifera.


Subject(s)
Nelumbo , Nelumbo/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
6.
J Immunol ; 199(1): 159-171, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28576977

ABSTRACT

Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vß7 or Vß8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.


Subject(s)
Cell Differentiation , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/physiology , Cytokines/genetics , Cytokines/immunology , Cytotoxicity, Immunologic/immunology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Nuclear Transfer Techniques , Organ Specificity , Promyelocytic Leukemia Zinc Finger Protein , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
7.
Zhongguo Zhen Jiu ; 43(10): 1180-3, 2023 Oct 12.
Article in Zh | MEDLINE | ID: mdl-37802526

ABSTRACT

Ashi points play a significant role in the clinical localization and qualitative diagnosis of acupuncture, as well as in selecting acupoints along the meridians and applying tonifying or reducing techniques. This paper introduces the theoretical basis and existing technical methods of objectification of ashi point diagnosis and treatment. It proposes that using sensory quantitative testing to determine the temperature and tenderness thresholds of ashi points could help to identify the pathological characteristics of "cold" "heat" "deficiency" or "excess" of ashi points. In addition, the possibility of objectification of ashi point diagnosis-treatment plan is explored from three perspectives, precision of selection of ashi point therapy, objectification of effect evaluation of ashi point analgesia, and differentiation of the studies on ashi point analgesic mechanism, aiming to provide new research ideas for the modernization of traditional Chinese acupuncture.


Subject(s)
Acupuncture Therapy , Acupuncture , Analgesia , Meridians , Acupuncture Points
8.
Blood Adv ; 7(21): 6579-6588, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37682791

ABSTRACT

Although chemoimmunotherapy is the current standard of care for initial treatment of mantle cell lymphoma (MCL), newer data suggest that there may be a role for a chemotherapy-free approach. We report the 9-year follow-up results of a multicenter, phase 2 study of lenalidomide plus rituximab (LR) as the initial treatment of MCL. The LR doublet is used as induction and maintenance until progression, with optional discontinuation after 3 years. We previously reported an overall response rate of 92% in evaluable patients, with 64% achieving a complete response. At a median follow-up of 103 months, 17 of 36 evaluable patients (47%) remain in remission. The 9-year progression-free survival and overall survival were 51% and 66%, respectively. During maintenance, hematologic adverse events included asymptomatic grade 3 or 4 cytopenia (42% neutropenia, 5% thrombocytopenia, and 3% anemia) and mostly grade 1 to 2 infections managed in the outpatient setting (50% upper respiratory infections, 21% urinary tract infections, 16% sinusitis, 16% cellulitis, and 13% pneumonia, with 5% requiring hospitalization). More patients developed grade 1 and 2 neuropathy during maintenance therapy (29%) than during induction therapy (8%). Twenty-one percent of patients developed secondary malignancies, including 5% with invasive malignancies, whereas the remainder were noninvasive skin cancers treated with local skin-directed therapy. Two patients permanently discontinued therapy because of concerns of immunosuppression during the COVID-19 pandemic. With long-term follow-up, LR continues to demonstrate prolonged, durable responses with manageable safety as initial induction therapy. This trial was registered at www.clinicaltrials.gov as #NCT01472562.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Humans , Rituximab/adverse effects , Lenalidomide/therapeutic use , Lymphoma, Mantle-Cell/pathology , Follow-Up Studies , Pandemics , Antineoplastic Combined Chemotherapy Protocols/adverse effects
9.
Nat Commun ; 14(1): 3661, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339946

ABSTRACT

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.


Subject(s)
Acorus , Tetraploidy , Phylogeny , Diploidy , Genome
10.
J Genet Genomics ; 49(2): 120-131, 2022 02.
Article in English | MEDLINE | ID: mdl-34757038

ABSTRACT

Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.


Subject(s)
Melastomataceae , Myrtales , Evolution, Molecular , Genome, Plant/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL