Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3712-3725.e34, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38810646

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.


Subject(s)
Aminophenols , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Molecular Docking Simulation , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Aminophenols/pharmacology , Aminophenols/chemistry , Aminophenols/therapeutic use , Drug Discovery , Cryoelectron Microscopy , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/therapeutic use , Allosteric Site/drug effects , Animals , Ligands
2.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995514

ABSTRACT

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Subject(s)
Aminopyridines/metabolism , Benzodioxoles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Indoles/metabolism , Protein Folding , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Benzodioxoles/chemistry , Benzodioxoles/therapeutic use , Binding Sites , CHO Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cricetulus , Cryoelectron Microscopy , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/therapeutic use , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/therapeutic use , Mutation , Protein Domains/genetics , Sf9 Cells , Transfection
3.
Cell ; 185(18): 3329-3340.e13, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055198

ABSTRACT

Type 1 secretion systems (T1SSs) are widespread in pathogenic Gram-negative bacteria, extruding protein substrates following synthesis of the entire polypeptide. The Escherichia coli hemolysin A secretion system has long been considered a prototype in structural and mechanistic studies of T1SSs. Three membrane proteins-an inner membrane ABC transporter HlyB, an adaptor protein HlyD, and an outer membrane porin TolC-are required for secretion. However, the stoichiometry and structure of the complex are unknown. Here, cryo-electron microscopy (cryo-EM) structures determined in two conformations reveal that the inner membrane complex is a hetero-dodecameric assembly comprising three HlyB homodimers and six HlyD subunits. Functional studies indicate that oligomerization of HlyB and HlyD is essential for protein secretion and that polypeptides translocate through a canonical ABC transporter pathway in HlyB. Our data suggest that T1SSs entail three ABC transporters, one that functions as a protein channel and two that allosterically power the translocation process.


Subject(s)
Escherichia coli Proteins , Hemolysin Proteins , ATP-Binding Cassette Transporters/metabolism , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Hemolysin Proteins/metabolism , Membrane Transport Proteins/metabolism
4.
Cell ; 172(1-2): 81-89.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290467

ABSTRACT

The multidrug resistance protein MRP1 is an ATP-driven pump that confers resistance to chemotherapy. Previously, we have shown that intracellular substrates are recruited to a bipartite binding site when the transporter rests in an inward-facing conformation. A key question remains: how are high-affinity substrates transferred across the membrane and released outside the cell? Using electron cryomicroscopy, we show here that ATP binding opens the transport pathway to the extracellular space and reconfigures the substrate-binding site such that it relinquishes its affinity for substrate. Thus, substrate is released prior to ATP hydrolysis. With this result, we now have a complete description of the conformational cycle that enables substrate transfer in a eukaryotic ABC exporter.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Adenosine Triphosphate/metabolism , Leukotriene C4/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphate/chemistry , Animals , Binding Sites , HEK293 Cells , Humans , Leukotriene C4/chemistry , Protein Binding , Protein Multimerization , Sf9 Cells , Spodoptera
5.
Cell ; 168(6): 1075-1085.e9, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28238471

ABSTRACT

The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.


Subject(s)
Multidrug Resistance-Associated Proteins/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Adenosine Triphosphate/chemistry , Animals , Cattle , Cryoelectron Microscopy , Drug Resistance, Multiple , HEK293 Cells , Humans , Hydrolysis , Mice , Models, Molecular , Multidrug Resistance-Associated Proteins/ultrastructure , Protein Domains , Sf9 Cells
6.
Cell ; 170(3): 483-491.e8, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28735752

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from an ATP-binding cassette transporter. CFTR channel gating is strictly coupled to phosphorylation and ATP hydrolysis. Previously, we reported essentially identical structures of zebrafish and human CFTR in the dephosphorylated, ATP-free form. Here, we present the structure of zebrafish CFTR in the phosphorylated, ATP-bound conformation, determined by cryoelectron microscopy to 3.4 Å resolution. Comparison of the two conformations shows major structural rearrangements leading to channel opening. The phosphorylated regulatory domain is disengaged from its inhibitory position; the nucleotide-binding domains (NBDs) form a "head-to-tail" dimer upon binding ATP; and the cytoplasmic pathway, found closed off in other ATP-binding cassette transporters, is cracked open, consistent with CFTR's unique channel function. Unexpectedly, the extracellular mouth of the ion pore remains closed, indicating that local movements of the transmembrane helices can control ion access to the pore even in the NBD-dimerized conformation.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Zebrafish Proteins/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Cryoelectron Microscopy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Models, Molecular , Protein Domains , Sequence Alignment , Zebrafish Proteins/metabolism
7.
Cell ; 169(1): 85-95.e8, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340353

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Animals , Cattle , Cryoelectron Microscopy , Humans , Hydrolysis , Models, Molecular , Protein Domains , Xenopus laevis , Zebrafish , Zebrafish Proteins/chemistry
8.
Cell ; 167(6): 1586-1597.e9, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912062

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Zebrafish Proteins/chemistry , Zebrafish/metabolism , Animals , Cryoelectron Microscopy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Models, Molecular , Mutation , Protein Folding , Sequence Homology, Amino Acid , Zebrafish Proteins/metabolism
9.
Nature ; 616(7957): 606-614, 2023 04.
Article in English | MEDLINE | ID: mdl-36949202

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Chlorides/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Electric Conductivity , Electrophysiology , Fluorescence Resonance Energy Transfer , Ion Channel Gating , Protein Multimerization/genetics
10.
Proc Natl Acad Sci U S A ; 121(9): e2316673121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381791

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that regulates transepithelial salt and fluid homeostasis. CFTR dysfunction leads to reduced chloride secretion into the mucosal lining of epithelial tissues, thereby causing the inherited disease cystic fibrosis. Although several structures of CFTR are available, our understanding of the ion-conduction pathway is incomplete. In particular, the route that connects the cytosolic vestibule with the extracellular space has not been clearly defined, and the structure of the open pore remains elusive. Furthermore, although many residues have been implicated in altering the selectivity of CFTR, the structure of the "selectivity filter" has yet to be determined. In this study, we identify a chloride-binding site at the extracellular ends of transmembrane helices 1, 6, and 8, where a dehydrated chloride is coordinated by residues G103, R334, F337, T338, and Y914. Alterations to this site, consistent with its function as a selectivity filter, affect ion selectivity, conductance, and open channel block. This selectivity filter is accessible from the cytosol through a large inner vestibule and opens to the extracellular solvent through a narrow portal. The identification of a chloride-binding site at the intra- and extracellular bridging point leads us to propose a complete conductance path that permits dehydrated chloride ions to traverse the lipid bilayer.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Chlorides/metabolism , Cystic Fibrosis/genetics , Ion Transport , Protein Structure, Secondary
11.
Proc Natl Acad Sci U S A ; 121(23): e2320879121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805290

ABSTRACT

Our ability to fight pathogens relies on major histocompatibility complex class I (MHC-I) molecules presenting diverse antigens on the surface of diseased cells. The transporter associated with antigen processing (TAP) transports nearly the entire repertoire of antigenic peptides into the endoplasmic reticulum for MHC-I loading. How TAP transports peptides specific for MHC-I is unclear. In this study, we used cryo-EM to determine a series of structures of human TAP, both in the absence and presence of peptides with various sequences and lengths. The structures revealed that peptides of eight or nine residues in length bind in a similarly extended conformation, despite having little sequence overlap. We also identified two peptide-anchoring pockets on either side of the transmembrane cavity, each engaging one end of a peptide with primarily main chain atoms. Occupation of both pockets results in a global conformational change in TAP, bringing the two halves of the transporter closer together to prime it for isomerization and ATP hydrolysis. Shorter peptides are able to bind to each pocket separately but are not long enough to bridge the cavity to bind to both simultaneously. Mutations that disrupt hydrogen bonds with the N and C termini of peptides almost abolish MHC-I surface expression. Our findings reveal that TAP functions as a molecular caliper that selects peptides according to length rather than sequence, providing antigen diversity for MHC-I presentation.


Subject(s)
ATP-Binding Cassette Transporters , Antigen Presentation , Histocompatibility Antigens Class I , Peptides , Humans , Peptides/metabolism , Peptides/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Cryoelectron Microscopy , Protein Conformation , Protein Binding , Models, Molecular
12.
Proc Natl Acad Sci U S A ; 121(10): e2316675121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422021

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates electrolyte and fluid balance in epithelial tissues. While activation of CFTR is vital to treating cystic fibrosis, selective inhibition of CFTR is a potential therapeutic strategy for secretory diarrhea and autosomal dominant polycystic kidney disease. Although several CFTR inhibitors have been developed by high-throughput screening, their modes of action remain elusive. In this study, we determined the structure of CFTR in complex with the inhibitor CFTRinh-172 to an overall resolution of 2.7 Å by cryogenic electron microscopy. We observe that CFTRinh-172 binds inside the pore near transmembrane helix 8, a critical structural element that links adenosine triphosphate hydrolysis with channel gating. Binding of CFTRinh-172 stabilizes a conformation in which the chloride selectivity filter is collapsed, and the pore is blocked from the extracellular side of the membrane. Single-molecule fluorescence resonance energy transfer experiments indicate that CFTRinh-172 inhibits channel gating without compromising nucleotide-binding domain dimerization. Together, these data reconcile previous biophysical observations and provide a molecular basis for the activity of this widely used CFTR inhibitor.


Subject(s)
Adenosine Triphosphate , Cystic Fibrosis Transmembrane Conductance Regulator , Thiazolidines , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dimerization , Benzoates
13.
Proc Natl Acad Sci U S A ; 120(11): e2220012120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893260

ABSTRACT

Adenosine triphosphate-binding cassette (ABC) transporters, such as multidrug resistance protein 1 (MRP1), protect against cellular toxicity by exporting xenobiotic compounds across the plasma membrane. However, constitutive MRP1 function hinders drug delivery across the blood-brain barrier, and MRP1 overexpression in certain cancers leads to acquired multidrug resistance and chemotherapy failure. Small-molecule inhibitors have the potential to block substrate transport, but few show specificity for MRP1. Here we identify a macrocyclic peptide, named CPI1, which inhibits MRP1 with nanomolar potency but shows minimal inhibition of a related multidrug transporter P-glycoprotein. A cryoelectron microscopy (cryo-EM) structure at 3.27 Å resolution shows that CPI1 binds MRP1 at the same location as the physiological substrate leukotriene C4 (LTC4). Residues that interact with both ligands contain large, flexible sidechains that can form a variety of interactions, revealing how MRP1 recognizes multiple structurally unrelated molecules. CPI1 binding prevents the conformational changes necessary for adenosine triphosphate (ATP) hydrolysis and substrate transport, suggesting it may have potential as a therapeutic candidate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Multidrug Resistance-Associated Proteins , Adenosine Triphosphate/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Cryoelectron Microscopy , Leukotriene C4/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Peptides/metabolism , Peptides, Cyclic/pharmacology
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074919

ABSTRACT

ATP-binding cassette (ABC) transporters are ubiquitous molecular pumps that transport a broad range of substrates across biological membranes. Although the structure and function of ABC transporters has been studied extensively, our understanding of their energetics and dynamics remains limited. Here, we present studies of the peptidase-containing ABC transporter 1 (PCAT1), a polypeptide processing and secretion ABC transporter that functions via the classic alternating access mechanism. PCAT1 is a homodimer containing two peptidase (PEP) domains, two transmembrane domains, and two nucleotide-binding domains (NBDs). Using cryo-electron microscopy, we analyzed the structures of wild-type PCAT1 under conditions that either prevent or permit ATP hydrolysis and observed two completely different conformational distributions. In the presence of ATP but absence of Mg2+, PCAT1 adopts an NBD-dimerized, outward-facing conformation. The two PEP domains are dissociated from the transporter core, preventing uncoupled substrate cleavage. The addition of Mg2+ to promote ATP hydrolysis shifts the majority of the particles into NBD-separated, inward-facing conformations. Under this ATP turnover condition, only a small fraction of PCAT1 adopts the NBD-dimerized conformation. These data give rise to two mechanistic conclusions: 1) the ATP-bound, NBD-dimerized conformation is the lowest energy state, and 2) the rate-limiting step in the PCAT1 transport cycle is the formation of the NBD dimer. The thermodynamic conclusion is likely a general property shared by many ABC transporters. The kinetic bottleneck, however, varies from transporter to transporter.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Models, Molecular , Protein Conformation , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Mutation , Protein Binding
15.
BMC Cancer ; 24(1): 1132, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261780

ABSTRACT

OBJECTIVE: To investigate the impact of vasculogenic mimicry (VM) and postoperative adjuvant therapy on the prognosis and survival of patients with esophageal squamous cell carcinoma (ESCC), as well as to assess whether VM affects the clinical benefit of postoperative adjuvant therapy. METHODS: This single-center retrospective analysis included patients who underwent radical surgery for ESCC, which was documented in the medical record system. The presence or absence of VM in surgical specimens was determined using double staining with PAS/CD31. Stratification was applied based on adjuvant therapy and VM status. Survival curves and COX modeling were used to analyze the impact of the presence or absence of VM on the benefit of adjuvant therapy and the survival prognosis of patients. RESULTS: VM-positive patients were more prone to postoperative recurrence and metastasis. VM was identified as an independent risk factor for progression-free survival (PFS) (p < 0.001, 95% CI:1.809-3.852) and overall survival (OS) (p < 0.001, 95% CI:1.603-2.786) in postoperative ESCC. Postoperative adjuvant therapy significantly prolonged PFS (p = 0.008) and OS time (p < 0.001) in patients with stage II and III ESCC, with concurrent chemoradiotherapy being the most effective. However, the presence of VM significantly reduced the benefits of postoperative adjuvant therapy (p < 0.001). CONCLUSION: VM negatively impacts the prognosis of postoperative ESCC patients and reduces the efficacy of postoperative adjuvant therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Neoplasm Recurrence, Local , Humans , Male , Female , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/mortality , Middle Aged , Retrospective Studies , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/mortality , Prognosis , Aged , Neovascularization, Pathologic , Chemotherapy, Adjuvant/methods , Esophagectomy , Drug Resistance, Neoplasm , Neoplasm Staging
16.
Article in English | MEDLINE | ID: mdl-39223992

ABSTRACT

BACKGROUND: Rotational atherectomy (RA) remains an integral tool for the treatment of severe coronary calcified lesions despite emergence of newer techniques. We aimed to evaluate the contemporary clinical practices and outcomes of RA in China. METHODS: The Rota China Registry (NCT03806621) was an investigator-initiated, prospective, multicenter registry based on China Rota Elite Group. Consecutive patients treated with RA were recruited. A pre-designed, standardized protocol was recommended for the RA procedure. The primary safety endpoint was major adverse cardiovascular events (MACE: composite of cardiac death, myocardial infarction, or ischemia-driven target lesion revascularization) at 30 days. The primary efficacy endpoint was procedural success. RESULTS: Between July 2018 and December 2020, 980 patients were enrolled at 19 sites in China. Mean patient age was 68.4 years, and 61.4% were men. Radial access was used in 79.1% patients, and 32.7% procedures were guided by intravascular imaging. A total of 22.6% procedures used more than 1 burr, and the maximal burr size was ≥1.75 mm in 24.4% cases, with burr upsizing in 19.3% cases, achieving a final burr-to-artery ratio of 0.52. Procedural success was achieved in 91.1% of patients, and the rate of 30-day and 1-year MACE was 4.9% and 8.2%, respectively. Multivariable analysis identified the total lesion length (HR 1.014, 95% CI: 1.002-1.027; p = 0.021) as predictor of 30-day MACE, and renal insufficiency (HR 1.916, 95% CI: 1.073-3.420; p = 0.028) as predictor of 1-year MACE. CONCLUSIONS: In this contemporary prospective registry in China, the use of RA was effective in achieving high procedural success rate with good short- and long-term outcomes in patients with severely calcified lesions.

17.
Circ Res ; 131(8): 713-724, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173825

ABSTRACT

Spurred by the 2016 release of the National Heart, Lung, and Blood Institute's Strategic Vision, the Division of Cardiovascular Sciences developed its Strategic Vision Implementation Plan-a blueprint for reigniting the decline in cardiovascular disease (CVD) mortality rates, improving health equity, and accelerating translation of scientific discoveries into better cardiovascular health (CVH). The 6 scientific focus areas of the Strategic Vision Implementation Plan reflect the multifactorial nature of CVD and include (1) addressing social determinants of CVH and health inequities, (2) enhancing resilience, (3) promoting CVH and preventing CVD across the lifespan, (4) eliminating hypertension-related CVD, (5) reducing the burden of heart failure, and (6) preventing vascular dementia. This article presents an update of strategic vision implementation activities within Division of Cardiovascular Sciences. Overarching and cross-cutting themes include training the scientific workforce and engaging the extramural scientific community to stimulate transformative research in cardiovascular sciences. In partnership with other NIH Institutes, Federal agencies, industry, and the extramural research community, Division of Cardiovascular Sciences strategic vision implementation has stimulated development of numerous workshops and research funding opportunities. Strategic Vision Implementation Plan activities highlight innovative intervention modalities, interdisciplinary systems approaches to CVD reduction, a life course framework for CVH promotion and CVD prevention, and multi-pronged research strategies for combatting COVID-19. As new knowledge, technologies, and areas of scientific research emerge, Division of Cardiovascular Sciences will continue its thoughtful approach to strategic vision implementation, remaining poised to seize emerging opportunities and catalyze breakthroughs in cardiovascular sciences.


Subject(s)
COVID-19 , Heart Diseases , Humans , National Heart, Lung, and Blood Institute (U.S.) , United States/epidemiology
18.
Inorg Chem ; 63(17): 7848-7857, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38635372

ABSTRACT

To systematically investigate the dependence of the initiating group and metal size on polymerization performance, a family of rare-earth metal bis(alkyl)/bis(benzyl)/bis(amide) complexes supported by a monoanionic tridentate amidinate ligand [(2,6-iPr2C6H3)NC(Ph)N(C6H4-2-OMe]- (HL) were synthesized and well-characterized. Treatment of rare-earth metal tris(alkyl)/tris(benzyl)/tris(amide) complexes Y(CH2C6H4NMe2-o)3 or Y(CH2SiMe3)3(THF)2 or Ln[N(SiHMe2)2]3(THF)x (Ln = Sc, x = 1; Ln = Y, La, Sm, Lu, x = 2) with 1 equiv of HL gave the corresponding mono(amidinate) rare-earth metal bis(alkyl)/bis(benzyl)/bis(amide) complexes [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Y(CH2C6H4NMe2-o)2 (1), [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Y(CH2SiMe3)2(THF) (2), and [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Ln[N(SiHMe2)2]2(THF)n (Ln = Y, n = 1 (3); Ln = La, n = 1 (4); Ln = Sc, n = 0 (5); Ln = Lu, n = 0 (6); Ln = Sm, n = 0 (7)) in good isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction. In the presence of excess AlMe3 and on treatment with 1 equiv of [Ph3C][B(C6F5)4], these complexes could serve as precatalysts for cationic polymerization of isoprene, in which the dependence of the polymerization activity and regioselectivity on the initiating group and metal size was observed.

19.
Inorg Chem ; 63(38): 17574-17583, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39235131

ABSTRACT

Chemical recycling is a promising strategy to establish a circular plastic economy, and it is still in an early stage of development. In this work, the reductive depolymerization of polyesters and polycarbonates into their corresponding borylated alcohols promoted by heterogeneous lanthanum materials was described. Grafting the easily accessible lanthanum tris(aminobenzyl) complex La(CH2C6H4NMe2-o)3 (1) onto the partially dehydroxylated silica support SBA-15 (SBA-15500 or SBA-15700) gave the inorganic-organic hybrid materials 1@SBA-15500 and 1@SBA-15700. These hybrid lanthanum materials, in combination with pinacolborane (HBpin), could serve as highly active heterogeneous catalysts for the selective depolymerization of aliphatic and aromatic polyesters, as well as polycarbonates into their corresponding borylated diols through a hydroboration reaction under mild conditions. The lanthanum materials exhibited a practical application in plastic waste recycling for their easy preparation, high catalytic efficiency, and recyclable property.

SELECTION OF CITATIONS
SEARCH DETAIL