Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615703

ABSTRACT

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Subject(s)
Amino Acids, Essential , Animal Feed , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Animals , Animal Feed/analysis , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Amino Acids, Essential/administration & dosage , Perciformes/growth & development , Perciformes/immunology , Diet, Protein-Restricted/veterinary , Diet/veterinary , Random Allocation , Fishes/growth & development , Aquaculture , Channa punctatus
2.
Animals (Basel) ; 14(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38338134

ABSTRACT

Figla is one of the earliest expressed genes in the oocyte during ovarian development. In this study, Figla was characterized in C. maculata, one of the main aquaculture species in China, and designated as CmFigla. The length of CmFigla cDNA was 1303 bp, encoding 197 amino acids that contained a conserved bHLH domain. CmFigla revealed a female-biased expression patterns in the gonads of adult fish, and CmFigla expression was far higher in ovaries than that in testes at all gonadal development stages, especially at 60~180 days post-fertilization (dpf). Furthermore, a noteworthy inverse relationship was observed between CmFigla expression and the methylation of its promoter in the adult gonads. Gonads at 90 dpf were used for in situ hybridization (ISH), and CmFigla transcripts were mainly concentrated in oogonia and the primary oocytes in ovaries, but undetectable in the testes. These results indicated that Figla would play vital roles in the ovarian development in C. maculata. Additionally, the frame-shift mutations of CmFigla were successfully constructed through the CRISPR/Cas9 system, which established a positive foundation for further investigation on the role of Figla in the ovarian development of C. maculata. Our study provides valuable clues for exploring the regulatory mechanism of Figla in the fish ovarian development and maintenance, which would be useful for the sex control and reproduction of fish in aquaculture.

SELECTION OF CITATIONS
SEARCH DETAIL