Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.597
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(9): 1446-1461.e6, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36996812

ABSTRACT

Enhancer clusters overlapping disease-associated mutations in Pierre Robin sequence (PRS) patients regulate SOX9 expression at genomic distances over 1.25 Mb. We applied optical reconstruction of chromatin architecture (ORCA) imaging to trace 3D locus topology during PRS-enhancer activation. We observed pronounced changes in locus topology between cell types. Subsequent analysis of single-chromatin fiber traces revealed that these ensemble-average differences arise through changes in the frequency of commonly sampled topologies. We further identified two CTCF-bound elements, internal to the SOX9 topologically associating domain, which promote stripe formation, are positioned near the domain's 3D geometric center, and bridge enhancer-promoter contacts in a series of chromatin loops. Ablation of these elements results in diminished SOX9 expression and altered domain-wide contacts. Polymer models with uniform loading across the domain and frequent cohesin collisions recapitulate this multi-loop, centrally clustered geometry. Together, we provide mechanistic insights into architectural stripe formation and gene regulation over ultra-long genomic ranges.


Subject(s)
Chromatin , Regulatory Sequences, Nucleic Acid , Humans , Chromatin/genetics , Promoter Regions, Genetic , Gene Expression Regulation , Genome , Cell Cycle Proteins/metabolism , Enhancer Elements, Genetic , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism
2.
Mol Cell ; 83(10): 1623-1639.e8, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37164018

ABSTRACT

The HUSH complex recognizes and silences foreign DNA such as viruses, transposons, and transgenes without prior exposure to its targets. Here, we show that endogenous targets of the HUSH complex fall into two distinct classes based on the presence or absence of H3K9me3. These classes are further distinguished by their transposon content and differential response to the loss of HUSH. A de novo genomic rearrangement at the Sox2 locus induces a switch from H3K9me3-independent to H3K9me3-associated HUSH targeting, resulting in silencing. We further demonstrate that HUSH interacts with the termination factor WDR82 and-via its component MPP8-with nascent RNA. HUSH accumulates at sites of high RNAPII occupancy including long exons and transcription termination sites in a manner dependent on WDR82 and CPSF. Together, our results uncover the functional diversity of HUSH targets and show that this vertebrate-specific complex exploits evolutionarily ancient transcription termination machinery for co-transcriptional chromatin targeting and genome surveillance.


Subject(s)
Gene Silencing , Transcription Factors , Transcription Factors/metabolism , Transcription, Genetic , Genome/genetics , RNA
3.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38092000

ABSTRACT

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Subject(s)
Acyltransferases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Caspase 1/metabolism , Histidine/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipoylation , Macrophages/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism
4.
Mol Cell ; 82(24): 4700-4711.e12, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36384136

ABSTRACT

Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.


Subject(s)
AMP-Activated Protein Kinases , Protein Biosynthesis , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Phosphorylation , Peptide Elongation Factor 2/metabolism
5.
Nat Immunol ; 18(5): 541-551, 2017 05.
Article in English | MEDLINE | ID: mdl-28288099

ABSTRACT

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Subject(s)
Clostridiales/physiology , Colitis, Ulcerative/immunology , Colon/physiology , Firmicutes/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Microbiota , RNA, Ribosomal, 16S/analysis , Animals , Biodiversity , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Colon/microbiology , Dextran Sulfate , Feces/microbiology , Gene-Environment Interaction , Humans , Immunity, Innate/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Microbiota/immunology , Symbiosis , Twins, Monozygotic
7.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615088

ABSTRACT

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Subject(s)
Adenosine/analogs & derivatives , Head and Neck Neoplasms/genetics , Methyltransferases/genetics , Nerve Tissue Proteins/genetics , RNA Splicing Factors/genetics , Recombinational DNA Repair/drug effects , Squamous Cell Carcinoma of Head and Neck/genetics , Adenosine/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Bleomycin/pharmacology , Cell Line, Tumor , DNA/genetics , DNA/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , HEK293 Cells , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Humans , Methyltransferases/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Nerve Tissue Proteins/metabolism , Nucleic Acid Hybridization , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing Factors/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Ribonuclease H/genetics , Ribonuclease H/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Survival Analysis , Xenograft Model Antitumor Assays
8.
Genome Res ; 34(3): 376-393, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38609186

ABSTRACT

Exon-intron circRNAs (EIciRNAs) are a circRNA subclass with retained introns. Global features of EIciRNAs remain largely unexplored, mainly owing to the lack of bioinformatic tools. The regulation of intron retention (IR) in EIciRNAs and the associated functionality also require further investigation. We developed a framework, FEICP, which efficiently detected EIciRNAs from high-throughput sequencing (HTS) data. EIciRNAs are distinct from exonic circRNAs (EcircRNAs) in aspects such as with larger length, localization in the nucleus, high tissue specificity, and enrichment mostly in the brain. Deep learning analyses revealed that compared with regular introns, the retained introns of circRNAs (CIRs) are shorter in length, have weaker splice site strength, and have higher GC content. Compared with retained introns in linear RNAs (LIRs), CIRs are more likely to form secondary structures and show greater sequence conservation. CIRs are closer to the 5'-end, whereas LIRs are closer to the 3'-end of transcripts. EIciRNA-generating genes are more actively transcribed and associated with epigenetic marks of gene activation. Computational analyses and genome-wide CRISPR screening revealed that SRSF1 binds to CIRs and inhibits the biogenesis of most EIciRNAs. SRSF1 regulates the biogenesis of EIciLIMK1, which enhances the expression of LIMK1 in cis to boost neuronal differentiation, exemplifying EIciRNA physiological function. Overall, our study has developed the FEICP pipeline to identify EIciRNAs from HTS data, and reveals multiple features of CIRs and EIciRNAs. SRSF1 has been identified to regulate EIciRNA biogenesis. EIciRNAs and the regulation of EIciRNA biogenesis play critical roles in neuronal differentiation.


Subject(s)
Exons , Introns , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , High-Throughput Nucleotide Sequencing , Computational Biology/methods
9.
Nat Immunol ; 16(10): 1085-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26258942

ABSTRACT

The locus encoding the T cell antigen receptor (TCR) α-chain and δ-chain (Tcra-Tcrd) undergoes recombination of its variable-diversity-joining (V(D)J) segments in CD4(-)CD8(-) double-negative thymocytes and CD4(+)CD8(+) double-positive thymocytes to generate diverse TCRδ repertoires and TCRα repertoires, respectively. Here we identified a chromatin-interaction network in the Tcra-Tcrd locus in double-negative thymocytes that was formed by interactions between binding elements for the transcription factor CTCF. Disruption of a discrete chromatin loop encompassing the D, J and constant (C) segments of Tcrd allowed a single V segment to frequently contact and rearrange to D and J segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulated TCRδ diversity and indirectly regulated TCRα diversity.


Subject(s)
Chromatin/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Chromatin/genetics , Flow Cytometry , Mice , Nucleic Acid Conformation , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics
10.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566882

ABSTRACT

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Subject(s)
Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Innate/immunology , Intercellular Signaling Peptides and Proteins/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Adaptor Proteins, Signal Transducing , Animals , Autoimmunity/genetics , Carrier Proteins/genetics , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cell Cycle Proteins , Encephalomyelitis, Autoimmune, Experimental/genetics , Eukaryotic Initiation Factors , Humans , Immunity, Innate/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/microbiology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/immunology , TNF Receptor-Associated Factor 6/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
11.
Nature ; 591(7849): 300-305, 2021 03.
Article in English | MEDLINE | ID: mdl-33505023

ABSTRACT

The inflammasome initiates innate defence and inflammatory responses by activating caspase-1 and pyroptotic cell death in myeloid cells1,2. It consists of an innate immune receptor/sensor, pro-caspase-1, and a common adaptor molecule, ASC. Consistent with their pro-inflammatory function, caspase-1, ASC and the inflammasome component NLRP3 exacerbate autoimmunity during experimental autoimmune encephalomyelitis by enhancing the secretion of IL-1ß and IL-18 in myeloid cells3-6. Here we show that the DNA-binding inflammasome receptor AIM27-10 has a T cell-intrinsic and inflammasome-independent role in the function of T regulatory (Treg) cells. AIM2 is highly expressed by both human and mouse Treg cells, is induced by TGFß, and its promoter is occupied by transcription factors that are associated with Treg cells such as RUNX1, ETS1, BCL11B and CREB. RNA sequencing, biochemical and metabolic analyses demonstrated that AIM2 attenuates AKT phosphorylation, mTOR and MYC signalling, and glycolysis, but promotes oxidative phosphorylation of lipids in Treg cells. Mechanistically, AIM2 interacts with the RACK1-PP2A phosphatase complex to restrain AKT phosphorylation. Lineage-tracing analysis demonstrates that AIM2 promotes the stability of Treg cells during inflammation. Although AIM2 is generally accepted as an inflammasome effector in myeloid cells, our results demonstrate a T cell-intrinsic role of AIM2 in restraining autoimmunity by reducing AKT-mTOR signalling and altering immune metabolism to enhance the stability of Treg cells.


Subject(s)
Autoimmunity/immunology , DNA-Binding Proteins/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , CARD Signaling Adaptor Proteins/deficiency , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycolysis , Humans , Inflammasomes , Inflammation/immunology , Mice , Oxidative Phosphorylation , Phosphorylation , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors for Activated C Kinase/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta
12.
Nature ; 591(7850): 413-419, 2021 03.
Article in English | MEDLINE | ID: mdl-33618348

ABSTRACT

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Subject(s)
Genome, Human/genetics , Genomics , Human Migration/history , China , Crop Production/history , Female , Haplotypes/genetics , History, Ancient , Humans , Japan , Language/history , Male , Mongolia , Nepal , Oryza , Polymorphism, Single Nucleotide/genetics , Siberia , Taiwan
13.
Nature ; 594(7861): 33-36, 2021 06.
Article in English | MEDLINE | ID: mdl-34002091

ABSTRACT

The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.

15.
Proc Natl Acad Sci U S A ; 121(9): e2311883121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386705

ABSTRACT

Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.


Subject(s)
Benzylamines , Myocardium , Sarcomeres , Uracil/analogs & derivatives , Humans , Myofibrils , Myocytes, Cardiac , Myosins
16.
Trends Biochem Sci ; 47(3): 250-264, 2022 03.
Article in English | MEDLINE | ID: mdl-34865956

ABSTRACT

Circular RNAs (circRNAs) are covalently closed single-stranded RNAs. Four subclasses of circRNAs have been identified in animal cells, and they have unique features in their biogenesis, degradation, and transport. CircRNAs have diverse molecular functions in sponging miRNAs, regulating transcription, modulating RNA-binding proteins, and even encoding proteins. Some circRNAs are important regulators of various physiological processes to maintain homeostasis. Dysregulation of circRNAs is associated with human disorders, and individual circRNAs are crucial factors that contribute to major diseases including non-immunological diseases such as cancers, neurological disorders, cardiovascular disease, and metabolic disease. Debates on circRNAs have also been raised in recent years, and further studies would help to resolve these disputes and potentially lead to biomedical applications of circRNAs.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Neoplasms , RNA, Circular , Animals , Cardiovascular Diseases/genetics , Humans , Metabolic Diseases/genetics , MicroRNAs/genetics , Neoplasms/genetics , Nervous System Diseases/genetics , RNA Splicing , RNA, Circular/genetics
17.
Hum Mol Genet ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39277847

ABSTRACT

The effectiveness of drug treatments is profoundly influenced by individual responses, which are shaped by gene expression variability, particularly within pharmacogenes. Leveraging single-cell RNA sequencing (scRNA-seq) data, our study explores the extent of expression variability among pharmacogenes in a wide array of cell types across eight different human tissues, shedding light on their impact on drug responses. Our findings broaden the established link between variability in pharmacogene expression and drug efficacy to encompass variability at the cellular level. Moreover, we unveil a promising approach to enhance drug efficacy prediction. This is achieved by leveraging a combination of cross-cell and cross-individual pharmacogene expression variation measurements. Our study opens avenues for more precise forecasting of drug performance, facilitating tailored and more effective treatments in the future.

18.
Development ; 150(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36695474

ABSTRACT

Drosophila sperm development is characterized by extensive post-transcriptional regulation whereby thousands of transcripts are preserved for translation during later stages. A key step in translation initiation is the binding of eukaryotic initiation factor 4E (eIF4E) to the 5' mRNA cap. In addition to canonical eIF4E-1, Drosophila has multiple eIF4E paralogs, including four (eIF4E-3, -4, -5, and -7) that are highly expressed in the testis. Among these, only eIF4E-3 has been characterized genetically. Here, using CRISPR/Cas9 mutagenesis, we determined that eIF4E-5 is essential for male fertility. eIF4E-5 protein localizes to the distal ends of elongated spermatid cysts, and eIF4E-5 mutants exhibit defects during post-meiotic stages, including a mild defect in spermatid cyst polarization. eIF4E-5 mutants also have a fully penetrant defect in individualization, resulting in failure to produce mature sperm. Indeed, our data indicate that eIF4E-5 regulates non-apoptotic caspase activity during individualization by promoting local accumulation of the E3 ubiquitin ligase inhibitor Soti. Our results further extend the diversity of non-canonical eIF4Es that carry out distinct spatiotemporal roles during spermatogenesis.


Subject(s)
Drosophila melanogaster , Semen , Animals , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Semen/metabolism , Drosophila/metabolism , Spermatogenesis/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism
19.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38261342

ABSTRACT

Accurate identification of cell cycle phases in single-cell RNA-sequencing (scRNA-seq) data is crucial for biomedical research. Many methods have been developed to tackle this challenge, employing diverse approaches to predict cell cycle phases. In this review article, we delve into the standard processes in identifying cell cycle phases within scRNA-seq data and present several representative methods for comparison. To rigorously assess the accuracy of these methods, we propose an error function and employ multiple benchmarking datasets encompassing human and mouse data. Our evaluation results reveal a key finding: the fit between the reference data and the dataset being analyzed profoundly impacts the effectiveness of cell cycle phase identification methods. Therefore, researchers must carefully consider the compatibility between the reference data and their dataset to achieve optimal results. Furthermore, we explore the potential benefits of incorporating benchmarking data with multiple known cell cycle phases into the analysis. Merging such data with the target dataset shows promise in enhancing prediction accuracy. By shedding light on the accuracy and performance of cell cycle phase prediction methods across diverse datasets, this review aims to motivate and guide future methodological advancements. Our findings offer valuable insights for researchers seeking to improve their understanding of cellular dynamics through scRNA-seq analysis, ultimately fostering the development of more robust and widely applicable cell cycle identification methods.


Subject(s)
Benchmarking , Biomedical Research , Humans , Animals , Mice , Cell Cycle , Research Personnel
20.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38366803

ABSTRACT

The evolution in single-cell RNA sequencing (scRNA-seq) technology has opened a new avenue for researchers to inspect cellular heterogeneity with single-cell precision. One crucial aspect of this technology is cell-type annotation, which is fundamental for any subsequent analysis in single-cell data mining. Recently, the scientific community has seen a surge in the development of automatic annotation methods aimed at this task. However, these methods generally operate at a steady-state total cell-type capacity, significantly restricting the cell annotation systems'capacity for continuous knowledge acquisition. Furthermore, creating a unified scRNA-seq annotation system remains challenged by the need to progressively expand its understanding of ever-increasing cell-type concepts derived from a continuous data stream. In response to these challenges, this paper presents a novel and challenging setting for annotation, namely cell-type incremental annotation. This concept is designed to perpetually enhance cell-type knowledge, gleaned from continuously incoming data. This task encounters difficulty with data stream samples that can only be observed once, leading to catastrophic forgetting. To address this problem, we introduce our breakthrough methodology termed scEVOLVE, an incremental annotation method. This innovative approach is built upon the methodology of contrastive sample replay combined with the fundamental principle of partition confidence maximization. Specifically, we initially retain and replay sections of the old data in each subsequent training phase, then establish a unique prototypical learning objective to mitigate the cell-type imbalance problem, as an alternative to using cross-entropy. To effectively emulate a model that trains concurrently with complete data, we introduce a cell-type decorrelation strategy that efficiently scatters feature representations of each cell type uniformly. We constructed the scEVOLVE framework with simplicity and ease of integration into most deep softmax-based single-cell annotation methods. Thorough experiments conducted on a range of meticulously constructed benchmarks consistently prove that our methodology can incrementally learn numerous cell types over an extended period, outperforming other strategies that fail quickly. As far as our knowledge extends, this is the first attempt to propose and formulate an end-to-end algorithm framework to address this new, practical task. Additionally, scEVOLVE, coded in Python using the Pytorch machine-learning library, is freely accessible at https://github.com/aimeeyaoyao/scEVOLVE.


Subject(s)
Algorithms , Single-Cell Gene Expression Analysis , Benchmarking , Entropy , Gene Library , Sequence Analysis, RNA , Gene Expression Profiling , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL