Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 84: 865-94, 2015.
Article in English | MEDLINE | ID: mdl-25747398

ABSTRACT

Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.


Subject(s)
Biological Transport , Carbohydrate Metabolism , Membrane Transport Proteins/metabolism , Animals , Carbohydrates/chemistry , Excitatory Amino Acid Transporter 2 , Humans , Plant Cells/metabolism , Plants/metabolism
2.
Nature ; 603(7900): 328-334, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35197632

ABSTRACT

Effective antitumour immunity depends on the orchestration of potent T cell responses against malignancies1. Regression of human cancers has been induced by immune checkpoint inhibitors, T cell engagers or chimeric antigen receptor T cell therapies2-4. Although CD8 T cells function as key effectors of these responses, the role of CD4 T cells beyond their helper function has not been defined. Here we demonstrate that a trispecific antibody to HER2, CD3 and CD28 stimulates regression of breast cancers in a humanized mouse model through a mechanism involving CD4-dependent inhibition of tumour cell cycle progression. Although CD8 T cells directly mediated tumour lysis in vitro, CD4 T cells exerted antiproliferative effects by blocking cancer cell cycle progression at G1/S. Furthermore, when T cell subsets were adoptively transferred into a humanized breast cancer tumour mouse model, CD4 T cells alone inhibited HER2+ breast cancer growth in vivo. RNA microarray analysis revealed that CD4 T cells markedly decreased tumour cell cycle progression and proliferation, and also increased pro-inflammatory signalling pathways. Collectively, the trispecific antibody to HER2 induced T cell-dependent tumour regression through direct antitumour and indirect pro-inflammatory/immune effects driven by CD4 T cells.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Female , Humans , Mice , Receptor, ErbB-2/genetics
3.
Proc Natl Acad Sci U S A ; 119(42): e2207558119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215460

ABSTRACT

SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13S142N, but not by the SWEET13N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Monosaccharide Transport Proteins , Plant Growth Regulators/metabolism , Sucrose/metabolism
4.
Plant Cell ; 33(3): 511-530, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33955487

ABSTRACT

The leaf vasculature plays a key role in solute translocation. Veins consist of at least seven distinct cell types, with specific roles in transport, metabolism, and signaling. Little is known about leaf vascular cells, in particular the phloem parenchyma (PP). PP effluxes sucrose into the apoplasm as a basis for phloem loading, yet PP has been characterized only microscopically. Here, we enriched vascular cells from Arabidopsis leaves to generate a single-cell transcriptome atlas of leaf vasculature. We identified at least 19 cell clusters, encompassing epidermis, guard cells, hydathodes, mesophyll, and all vascular cell types, and used metabolic pathway analysis to define their roles. Clusters comprising PP cells were enriched for transporters, including SWEET11 and SWEET12 sucrose and UmamiT amino acid efflux carriers. We provide evidence that PP development occurs independently from ALTERED PHLOEM DEVELOPMENT, a transcription factor required for phloem differentiation. PP cells have a unique pattern of amino acid metabolism activity distinct from companion cells (CCs), explaining differential distribution/metabolism of amino acids in veins. The kinship relation of the vascular clusters is strikingly similar to the vein morphology, except for a clear separation of CC from the other vascular cells including PP. In summary, our single-cell RNA-sequencing analysis provides a wide range of information into the leaf vasculature and the role and relationship of the leaf cell types.


Subject(s)
Plant Leaves/metabolism , Plant Proteins/metabolism , Transcriptome/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phloem/metabolism , Plant Leaves/genetics , Plant Proteins/genetics
5.
Plant Physiol ; 189(1): 388-401, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35188197

ABSTRACT

Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Galactokinase/metabolism , Galactokinase/pharmacology , Galactose/metabolism , Galactose/pharmacology , Germination , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Pollen
6.
BMC Neurol ; 23(1): 253, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391712

ABSTRACT

BACKGROUND: Autoimmune encephalitis related to the leucine-rich glioma-inactivated protein 1(LGI1) antibody is the most prevalent in older adults, manifesting as seizures, faciobrachial dystonic seizures (FBDS), cognitive impairment, memory disturbance, hyponatremia and neuropsychiatric disorders. However the data pertaining to children affected by the disease is still limited. CASE PRESENTATION AND LITERATURE REVIEWS: This study presents a detailed report of a 6-year-old Chinese girl who experienced nose aches and faciobrachial dystonic seizures (FBDS). Electrolyte testing revealed that she had hyponatremia and brain MRI showed an abnormality in the left temporal pole. Additionally, anti-LGI1 antibodies were detected in both her serum (1:100) and CSF (1:30). The patient was treated with immunotherapy and symptom management, which proved effective. Furthermore, we provide a summary of 25 pediatric cases of anti-LGI1 encephalitis. Pediatric patients rarely exhibited FBDS and hyponatremia, and some cases presented with isolated syndromes. But the therapeutic outcomes of pediatric patients were generally good. CONCLUSIONS: In this report, we describe a patient who developed a rare symptom of nose aches possibly as one of symptoms of anti-LGI1 encephalitis, which highlights the possibility of atypical symptoms in children that may be misdiagnosed. Reviewing the literature, the clinical features differed between pediatric and adult cases. Therefore, it is crucial to collect and analyze data from more cases to promote accurate diagnosis and timely treatment.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Glioma , Hyponatremia , Child , Female , Humans , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy , Encephalitis/diagnosis , Encephalitis/therapy , Leucine , Pain
7.
Nanotechnology ; 34(30)2023 May 12.
Article in English | MEDLINE | ID: mdl-37171102

ABSTRACT

This work demonstrates a facile and efficient methodology to synthesize a composite material of zeolitic imidazolate frameworks (ZIFs) and laser-induced graphene (LIG). This ZIF-67 loaded LIG composite (ZIF-67/LIG) has been adequately characterized for its morphology and structure, and its electrochemical performance has been specifically examined. As supercapacitors (SCs) electrode material, the ZIF-67/LIG composite exhibits superb electrochemical performance, owing to the inherent high porosity, abundant active sites, large specific surface area of ZIF-67, and the excellent conductive three-dimensional hierarchical porous network structure provided by LIG. In three-electrode system, ZIF-67/LIG composite electrode displays outstanding areal specific capacitance (CA) of 135.6 mF cm-2at a current density of 1 mA cm-2with 1 M Na2SO4aqueous electrolyte, which is far greater than that of pristine LIG (7.7 mF cm-2). Furthermore, the ZIF-67/LIG composite has been fabricated into an all-solid-state planar micro-supercapacitor (MSC). This ZIF-67/LIG MSC exhibits an impressiveCAof 38.1 mF cm-2at a current density of 0.20 mA cm-2, a good cycling stability of 80.3% capacitance retention after 3000 cycles, and a high energy density of 5.29µWh cm-2at a power density of 0.1 mW cm-2. All electrochemical results clearly manifest that as-prepared ZIF-67/LIG composite can be a candidate in energy storage field with exciting possibilities.

8.
Genet Sel Evol ; 55(1): 21, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977978

ABSTRACT

BACKGROUND: Genomic selection is widely applied for genetic improvement in livestock crossbreeding systems to select excellent nucleus purebred (PB) animals and to improve the performance of commercial crossbred (CB) animals. Most current predictions are based solely on PB performance. Our objective was to explore the potential application of genomic selection of PB animals using genotypes of CB animals with extreme phenotypes in a three-way crossbreeding system as the reference population. Using real genotyped PB as ancestors, we simulated the production of 100,000 pigs for a Duroc x (Landrace x Yorkshire) DLY crossbreeding system. The predictive performance of breeding values of PB animals for CB performance using genotypes and phenotypes of (1) PB animals, (2) DLY animals with extreme phenotypes, and (3) random DLY animals for traits of different heritabilities ([Formula: see text] = 0.1, 0.3, and 0.5) was compared across different reference population sizes (500 to 6500) and prediction models (genomic best linear unbiased prediction (GBLUP) and Bayesian sparse linear mixed model (BSLMM)). RESULTS: Using a reference population consisting of CB animals with extreme phenotypes showed a definite predictive advantage for medium- and low-heritability traits and, in combination with the BSLMM model, significantly improved selection response for CB performance. For high-heritability traits, the predictive performance of a reference population of extreme CB phenotypes was comparable to that of PB phenotypes when the effect of the genetic correlation between PB and CB performance ([Formula: see text]) on the accuracy obtained with a PB reference population was considered, and the former could exceed the latter if the reference size was large enough. For the selection of the first and terminal sires in a three-way crossbreeding system, prediction using extreme CB phenotypes outperformed the use of PB phenotypes, while the optimal design of the reference group for the first dam depended on the percentage of individuals from the corresponding breed that the PB reference data comprised and on the heritability of the target trait. CONCLUSIONS: A commercial crossbred population is promising for the design of the reference population for genomic prediction, and selective genotyping of CB animals with extreme phenotypes has the potential for maximizing genetic improvement for CB performance in the pig industry.


Subject(s)
Genome , Models, Genetic , Swine , Animals , Bayes Theorem , Genotype , Hybridization, Genetic , Genomics , Phenotype
9.
Genet Sel Evol ; 55(1): 43, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386365

ABSTRACT

BACKGROUND: Currently, meat cut traits are integrated in pig breeding objectives to gain extra profit. However, little is known about the heritability of meat cut proportions (MCP) and their correlations with other traits. The aims of this study were to assess the heritability and genetic correlation of MCP with carcass and meat quality traits using single nucleotide polymorphism chips and conduct a genome-wide association study (GWAS) to identify candidate genes for MCP. RESULTS: Seventeen MCP, 12 carcass, and seven meat quality traits were measured in 2012 pigs from four populations (Landrace; Yorkshire; Landrace and Yorkshire hybrid pigs; Duroc, and Landrace and Yorkshire hybrid pigs). Estimates of the heritability for MCP ranged from 0.10 to 0.55, with most estimates being moderate to high and highly consistent across populations. In the combined population, the heritability estimates for the proportions of scapula bone, loin, back fat, leg bones, and boneless picnic shoulder were 0.44 ± 0.04, 0.36 ± 0.04, 0.44 ± 0.04, 0.38 ± 0.04, and 0.39 ± 0.04, respectively. Proportion of middle cuts was genetically significantly positively correlated with intramuscular fat content and backfat depth. Proportion of ribs was genetically positively correlated with carcass oblique length and straight length (0.35 ± 0.08 to 0.45 ± 0.07) and negatively correlated with backfat depth (- 0.26 ± 0.10 to - 0.45 ± 0.10). However, weak or nonsignificant genetic correlations were observed between most MCP, indicating their independence. Twenty-eight quantitative trait loci (QTL) for MCP were detected by GWAS, and 24 new candidate genes related to MCP were identified, which are involved with growth, height, and skeletal development. Most importantly, we found that the development of the bones in different parts of the body may be regulated by different genes, among which HMGA1 may be the strongest candidate gene affecting forelimb bone development. Moreover, as previously shown, VRTN is a causal gene affecting vertebra number, and BMP2 may be the strongest candidate gene affecting hindlimb bone development. CONCLUSIONS: Our results indicate that breeding programs for MCP have the potential to enhance carcass composition by increasing the proportion of expensive cuts and decreasing the proportion of inexpensive cuts. Since MCP are post-slaughter traits, the QTL and candidate genes related to these traits can be used for marker-assisted and genomic selection.


Subject(s)
Red Meat , Swine , Animals , Swine/genetics , Genotype , Genome-Wide Association Study , Food Quality , Quantitative Trait Loci
11.
Article in English | MEDLINE | ID: mdl-36067726

ABSTRACT

INTRODUCTION: The aim of this study was to summarize the incidence, risk factors, and prognostic factors of distant metastasis of sinonasal carcinoma. METHODS: We collected data for patients diagnosed with sinonasal carcinoma from 2010 to 2015 from the SEER database and analyzed the risk factors for distant metastasis via univariate and multivariate logistic regression analysis. In addition, univariate and multivariate Cox regression analysis models were used to describe the factors related to the overall survival of patients with distant metastasis. RESULTS: A total of 2,255 patients were included in the study, including 86 in the distant metastasis group and 2,169 in the nondistant metastasis group. In the univariate and multivariate logistic regression analyses, we found that the risk factors affecting distant metastasis were poorly differentiated tumor grade (HR = 1.932, 95% CI: 1.082-3.452, p = 0.026), advanced T stage (T3-T4) (HR = 4.302, 95% CI: 2.047-9.039, p < 0.001), and advanced N stage (HR = 3.093, 95% CI: 1.911-5.005, p < 0.001). Moreover, elderly patients had a poorer prognosis than young patients (HR = 1.792, 95% CI: 1.096-2.931, p = 0.02) and that surgical treatment improved the survival rate of tumor patients with distant metastasis (HR = 0.450, 95% CI: 0.247-0.821, p = 0.009). CONCLUSION: Tumor grade, T stage, and N stage are risk factors for distant metastasis in sinonasal carcinoma, while an age of less than 65 years and surgery were positive prognostic factors for sinonasal carcinoma patients with distant metastasis.


Subject(s)
Carcinoma , Paranasal Sinus Neoplasms , Humans , Aged , Neoplasm Staging , Prognosis , Risk Factors
12.
BMC Plant Biol ; 22(1): 463, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167497

ABSTRACT

BACKGROUND: Broomcorn millet is highly tolerant to drought and barren soil. Changes in chlorophyll content directly affect leaf color, which subsequently leadsleading to poor photosynthetic performance and reduced crop yield. Herein, we isolated a yellow leaf mutant (YX-yl) using a forward genetics approach and evaluated its agronomic traits, photosynthetic pigment content, chloroplast ultrastructure, and chlorophyll precursors. Furthermore, the molecular mechanism of yellowing was explored using transcriptome sequencing. RESULTS: The YX-yl mutant showed significantly decreased plant height and low yield. The leaves exhibited a yellow-green phenotype and poor photosynthetic capacity during the entire growth period. The content of chlorophyll a, chlorophyll b, and carotenoids in YX-yl leaves was lower than that in wild-type leaves. Chlorophyll precursor analysis results showed that chlorophyll biosynthesis in YX-yl was hindered by the conversion of porphobilinogen to protoporphyrin IX. Examination of chloroplast ultrastructure in the leaves revealed that the chloroplasts of YX-yl accumulated on one side of the cell. Moreover, the chloroplast structure of YX-yl was degraded. The inner and outer membranes of the chloroplasts could not be distinguished well. The numbers of grana and grana thylakoids in the chloroplasts were low. The transcriptome of the yellowing mutant YX-yl was sequenced and compared with that of the wild type. Nine chlorophyll-related genes with significantly different expression profiles were identified: PmUROD, PmCPO, PmGSAM, PmPBDG, PmLHCP, PmCAO, PmVDE, PmGluTR, and PmPNPT. The proteins encoded by these genes were located in the chloroplast, chloroplast membrane, chloroplast thylakoid membrane, and chloroplast matrix and were mainly involved in chlorophyll biosynthesis and redox-related enzyme regulation. CONCLUSIONS: YX-yl is an ideal material for studying pigment metabolism mechanisms. Changes in the expression patterns of some genes between YX-yl and the wild type led to differences in chloroplast structures and enzyme activities in the chlorophyll biosynthesis pathway, ultimately resulting in a yellowing phenotype in the YX-yl mutant. Our findings provide an insight to the molecular mechanisms of leaf color formation and chloroplast development in broomcorn millet.


Subject(s)
Panicum , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Gene Expression Regulation, Plant , Panicum/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Porphobilinogen/metabolism , Soil
13.
New Phytol ; 236(2): 525-537, 2022 10.
Article in English | MEDLINE | ID: mdl-35811428

ABSTRACT

Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.


Subject(s)
Arabidopsis , Gibberellins , Arabidopsis/genetics , Flowers , Gene Expression Regulation, Plant , Hormones , Pollen/genetics , Sucrose
14.
Plant Physiol ; 186(1): 640-654, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33604597

ABSTRACT

In the fleshy fruit of cucumbers (Cucumis sativus L.), the phloem flow is unloaded via an apoplasmic pathway, which requires protein carriers to export sugars derived from stachyose and raffinose into the apoplasm. However, transporter(s) involved in this process remain unidentified. Here, we report that a hexose transporter, CsSWEET7a (Sugar Will Eventually be Exported Transporter 7a), was highly expressed in cucumber sink tissues and localized to the plasma membrane in companion cells of the phloem. Its expression level increased gradually during fruit development. Down-regulation of CsSWEET7a by RNA interference (RNAi) resulted in smaller fruit size along with reduced soluble sugar levels and reduced allocation of 14C-labelled carbon to sink tissues. CsSWEET7a overexpression lines showed an opposite phenotype. Interestingly, genes encoding alkaline α-galactosidase (AGA) and sucrose synthase (SUS) were also differentially regulated in CsSWEET7a transgenic lines. Immunohistochemical analysis demonstrated that CsAGA2 co-localized with CsSWEET7a in companion cells, indicating cooperation between AGA and CsSWEET7a in fruit phloem unloading. Our findings indicated that CsSWEET7a is involved in sugar phloem unloading in cucumber fruit by removing hexoses from companion cells to the apoplasmic space to stimulate the raffinose family of oligosaccharides (RFOs) metabolism so that additional sugars can be unloaded to promote fruit growth. This study also provides a possible avenue towards improving fruit production in cucumber.


Subject(s)
Cucumis sativus/growth & development , Fruit/growth & development , Monosaccharide Transport Proteins/genetics , Phloem/metabolism , Plant Proteins/genetics , Cucumis sativus/genetics , Cucumis sativus/metabolism , Fruit/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Proteins/metabolism
15.
Opt Express ; 30(10): 17106-17114, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221540

ABSTRACT

In this paper, we report on -3.5±0.2 dB vacuum squeezing (corresponding to -4.2±0.2 dB with loss correction) at 795 nm via the polarization self-rotation (PSR) effect in rubidium vapor by applying a magnetic field, whose direction is perpendicular to the propagation and polarization of the pump light. Compared with the case without the magnetic field, whose optimal squeezing degree is about -1.5 dB, this weak magnetic field can enhance the PSR effect and ultimately increase the squeezing degree. This compact squeezed light source can be potentially utilized in quantum protocols in which atomic ensembles are involved, such as in quantum memory, atomic magnetometers and quantum interferometers.

16.
Opt Express ; 30(7): 11514-11523, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473094

ABSTRACT

The SU (1,1)-type atom-light hybrid interferometer (SALHI) is a kind of interferometer that is sensitive to both the optical phase and atomic phase. However, the loss has been an unavoidable problem in practical applications and greatly limits the use of interferometers. Visibility is an important parameter to evaluate the performance of interferometers. Here, we experimentally demonstrate the mitigating effect of the loss on visibility of the SALHI via asymmetric gain optimization, where the maximum threshold of loss to visibility close to 100% is increased. Furthermore, we theoretically find that the optimal condition for the largest visibility is the same as that for the enhancement of signal-to-noise ratio (SNR) to the best value with the existence of the losses using the intensity detection, indicating that visibility can act as an experimental operational criterion for SNR improvement in practical applications. Improvement of the interference visibility means achievement of SNR enhancement. Our results provide a significant foundation for practical application of the SALHI in radar and ranging measurements.

17.
Plant Cell ; 31(6): 1328-1343, 2019 06.
Article in English | MEDLINE | ID: mdl-30996077

ABSTRACT

It has long been recognized that stomatal movement modulates CO2 availability and as a consequence the photosynthetic rate of plants, and that this process is feedback-regulated by photoassimilates. However, the genetic components and mechanisms underlying this regulatory loop remain poorly understood, especially in monocot crop species. Here, we report the cloning and functional characterization of a maize (Zea mays) mutant named closed stomata1 (cst1). Map-based cloning of cst1 followed by confirmation with the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 system identified the causal mutation in a Clade I Sugars Will Eventually be Exported Transporters (SWEET) family gene, which leads to the E81K mutation in the CST1 protein. CST1 encodes a functional glucose transporter expressed in subsidiary cells, and the E81K mutation strongly impairs the oligomerization and glucose transporter activity of CST1. Mutation of CST1 results in reduced stomatal opening, carbon starvation, and early senescence in leaves, suggesting that CST1 functions as a positive regulator of stomatal opening. Moreover, CST1 expression is induced by carbon starvation and suppressed by photoassimilate accumulation. Our study thus defines CST1 as a missing link in the feedback-regulation of stomatal movement and photosynthesis by photoassimilates in maize.


Subject(s)
Glucose Transport Proteins, Facilitative/metabolism , Photosynthesis/physiology , Glucose Transport Proteins, Facilitative/genetics , Photosynthesis/genetics , Plant Leaves/metabolism , Plant Stomata/metabolism , Zea mays/metabolism
18.
Virol J ; 19(1): 212, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494863

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus and its variants, has posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against SARS-CoV-2 variants. Therefore, novel vaccines to match mutated viral lineages by providing long-term protective immunity are urgently needed. We designed a recombinant adeno-associated virus 5 (rAAV5)-based vaccine (rAAV-COVID-19) by using the SARS-CoV-2 spike protein receptor binding domain (RBD-plus) sequence with both single-stranded (ssAAV5) and self-complementary (scAAV5) delivery vectors and found that it provides excellent protection from SARS-CoV-2 infection. A single-dose vaccination in mice induced a robust immune response; induced neutralizing antibody (NA) titers were maintained at a peak level of over 1:1024 more than a year post-injection and were accompanied by functional T-cell responses. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines produced high levels of serum NAs against the circulating SARS-CoV-2 variants, including Alpha, Beta, Gamma and Delta. A SARS-CoV-2 virus challenge showed that the ssAAV5-RBD-plus vaccine protected both young and old mice from SARS-CoV-2 infection in the upper and lower respiratory tracts. Whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genomes of vaccinated mice one year after vaccination, demonstrating vaccine safety. These results suggest that the rAAV5-based vaccine is safe and effective against SARS-CoV-2 and several variants as it provides long-term protective immunity. This novel vaccine has a significant potential for development into a human prophylactic vaccination to help end the global pandemic.


Subject(s)
COVID-19 , Parvovirinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics , Vaccines, Synthetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
19.
J Nanobiotechnology ; 20(1): 281, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705976

ABSTRACT

BACKGROUND: Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety. RESULTS: Herein, we designed novel glycocholic acid (GCA)-functionalized double layer nanoparticles (GCA-NPs), which can act via an endogenous pathway and in a temporally controlled manner in the intestine, to enhance the oral bioavailability of hydrophobic chemotherapeutic drugs such as paclitaxel (PTX). GCA-NPs were composed of quercetin (Qu)-modified liposomes (QL) coated with GCA-chitosan oligosaccharide conjugate (GCOS). The GCA-NPs thus prepared showed prolonged intestinal retention time and good GIT stability due to the presence of chitosan oligosaccharide (COS) and enhanced active transportation via intestinal apical sodium-dependent bile acid transporter (ASBT) due to the presence of GCA. GCA-NPs also efficiently inhibited intestinal P-gp induced by Qu. PTX-loaded GCA-NPs (PTX@GCA-NPs) had a particle size of 84 nm and an entrapment efficiency of 98% with good stability. As a result, the oral bioavailability of PTX was increased 19-fold compared to that of oral Taxol® at the same dose. Oral PTX@GCA-NPs displayed superior antitumor efficacy and better safety than Taxol® when administered intravenously. CONCLUSIONS: Our novel drug delivery system showed remarkable efficacy in overcoming multiple limitations and is a promising carrier for oral delivery of multiple drugs, which addresses several challenges in oral delivery in the clinical context.


Subject(s)
Chitosan , Nanoparticles , Administration, Oral , Biomimetics , Chitosan/chemistry , Drug Carriers/chemistry , Humans , Ileum , Nanoparticles/chemistry , Oligosaccharides , Paclitaxel , Quercetin
20.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142167

ABSTRACT

A few recent reviews have addressed progress and perspectives in the field of sugar transport in plants rather comprehensively [...].


Subject(s)
Plants , Sugars , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL