Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 120(42): e2306714120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816062

ABSTRACT

Mutations in the Presenilin (PSEN1 and PSEN2) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the ƎĀ³-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD PSEN1 mutations exhibit impaired ƎĀ³-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing ƎĀ³-secretase activity and is located closest to the active site of ƎĀ³-secretase. Here, we report that introduction of the codon-optimized wild-type human PSEN1 cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired ƎĀ³-secretase activity in the cerebral cortex of Psen mutant mice either lacking PS or expressing the Psen1 L435F KI allele, as evaluated by endogenous ƎĀ³-secretase substrates of APP and recombinant ƎĀ³-secretase products of Notch intracellular domain and AƟ peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in Psen mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged Psen mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired ƎĀ³-secretase activity, synaptic and memory deficits, and neurodegeneration caused by Psen mutations in mouse models.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Mice , Animals , Aged , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Mutation , Memory Disorders/genetics , Memory Disorders/therapy , Presenilin-2/genetics , Amyloid beta-Peptides/metabolism
2.
J Neurosci ; 42(23): 4755-4765, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35534227

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Subject(s)
Motor Disorders , Parkinson Disease , Animals , Dopamine , Dopaminergic Neurons/physiology , Female , Leucine , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice , Mice, Knockout , Motor Disorders/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology
3.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37873418

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), which is the leading neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). However, whether LRRK2 mutations cause PD and degeneration of DA neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether LRRK2 and its functional homologue LRRK1 play an essential, intrinsic role in DA neuron survival through the development of DA neuron-specific LRRK conditional double knockout (cDKO) mice. We first generated and characterized floxed LRRK1 and LRRK2 mice and then confirmed that germline deletions of the floxed LRRK1 and LRRK2 alleles result in null mutations, as evidenced by the absence of LRRK1 and LRRK2 mRNA and protein in the respective homozygous deleted mutant mice. We further examined the specificity of Cre-mediated recombination driven by the dopamine transporter-Cre (DAT-Cre) knockin (KI) allele using a GFP reporter line and confirmed that DAT-Cre-mediated recombination is restricted to DA neurons in the SNpc. Crossing these validated floxed LRRK1 and LRRK2 mice with DAT-Cre KI mice, we then generated DA neuron-restricted LRRK cDKO mice and further showed that levels of LRRK1 and LRRK2 are reduced in dissected ventral midbrains of LRRK cDKO mice. While DA neuron-restricted LRRK cDKO mice of both sexes exhibit normal mortality and body weight, they develop age-dependent loss of DA neurons in the SNpc, as demonstrated by the progressive reduction of DA neurons in the SNpc of LRRK cDKO mice at the ages of 20 and 24 months but the unaffected number of DA neurons at the age of 15 months. Moreover, DA neurodegeneration is accompanied with increases of apoptosis and elevated microgliosis in the SNpc as well as decreases of DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the importance of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.

4.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856715

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.


Subject(s)
Cell Survival , Dopaminergic Neurons , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Knockout , Animals , Dopaminergic Neurons/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Apoptosis
5.
Nat Commun ; 15(1): 7091, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154080

ABSTRACT

The integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1-R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass. We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes. Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells.


Subject(s)
DNA-Binding Proteins , Drosophila Proteins , Drosophila melanogaster , ErbB Receptors , Gene Expression Regulation, Developmental , Neurons , Signal Transduction , Transcription Factors , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurons/metabolism , Neurons/cytology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Differentiation , Photoreceptor Cells, Invertebrate/metabolism , Photoreceptor Cells, Invertebrate/cytology , Eye Proteins/metabolism , Eye Proteins/genetics , Imaginal Discs/metabolism , Imaginal Discs/cytology , Nerve Tissue Proteins , Proto-Oncogene Proteins , Receptors, Invertebrate Peptide
SELECTION OF CITATIONS
SEARCH DETAIL