Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Nat Methods ; 20(4): 617-622, 2023 04.
Article in English | MEDLINE | ID: mdl-36823329

ABSTRACT

In deep-tissue multiphoton microscopy, diffusion and scattering of fluorescent photons, rather than ballistic emanation from the focal point, have been a confounding factor. Here we report on a 2.17-g miniature three-photon microscope (m3PM) with a configuration that maximizes fluorescence collection when imaging in highly scattering regimes. We demonstrate its capability by imaging calcium activity throughout the entire cortex and dorsal hippocampal CA1, up to 1.2 mm depth, at a safe laser power. It also enables the detection of sensorimotor behavior-correlated activities of layer 6 neurons in the posterior parietal cortex in freely moving mice during single-pellet reaching tasks. Thus, m3PM-empowered imaging allows the study of neural mechanisms in deep cortex and subcortical structures, like the dorsal hippocampus and dorsal striatum, in freely behaving animals.


Subject(s)
Hippocampus , Microscopy, Fluorescence, Multiphoton , Mice , Animals , Microscopy, Fluorescence, Multiphoton/methods , Cerebral Cortex , Coloring Agents , Photons
2.
Dev Biol ; 510: 50-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521499

ABSTRACT

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Nervous System , Gastrulation/genetics , Genes, Homeobox
3.
Crit Rev Eukaryot Gene Expr ; 34(1): 27-39, 2024.
Article in English | MEDLINE | ID: mdl-37824390

ABSTRACT

There is a wide variety of cancer cells that can be linked to the presence of TPX2. However, there is not a lot of evidence regarding its role in the development and maintenance of clear cell renal cell carcinoma (ccRCC). In our study, bioinformatics analysis was performed to obtain differentially expressed mRNAs and miR-NAs in ccRCC. Survival curves predicted correlation of TPX2 expression with patient survival. The upstream regulatory miRNA of TPX2 was predicted to be miRNA-27b-3p through database, and dual luciferase assay verified the targeted relationship. qRT-PCR and Western blot were employed for examination of TPX2 mRNA and protein expression in ccRCC cells. Proliferation, invasion, migration and cell cycle were detected by CCK-8, colony formation, wound healing, Transwell, and flow cytometry assays. The results showed that TPX2 showed very high expression in ccRCC, and patients with higher TPX2 expression had shorter relative survival. Low miRNA-27b-3p expression was found in ccRCC. Knockdown of TPX2 or forced expression of miRNA-27b-3p in ccRCC cells inhibited cell proliferation, migration, invasion, and arrested cell division in G0/G1 phase. Dual luciferase reporter presented that miRNA-27b-3p targeted TPX2 to inhibit its expression. Rescue experiments demonstrated that the miRNA-27b-3p/ TPX2 axis affected the biological functions of ccRCC cells. Concurrent overexpression of miRNA-27b-3p and TPX2 inhibited the facilitating effect of TPX2 on ccRCC cell growth. The results revealed novel regulatory mechanisms involved in ccRCC progression, hoping that it may spark an insight for later discovery about the new therapeutic targets for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Luciferases , MicroRNAs/genetics , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics
4.
Small ; : e2400108, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511540

ABSTRACT

Aqueous rechargeable proton batteries are attractive due to the small ionic radius, light mass, and ultrafast diffusion kinetics of proton as charge carriers. However, the commonly used acidic electrolyte is usually very corrosive to the electrode material, which seriously affects the cycle life of the battery. Here, it is proposed that decreasing water activity and limiting proton concentration can effectively prevent side reactions of the MoO3 anode such as corrosion and hydrogen precipitation by using a lean-water hydrogel electrolyte. The as-prepared polyacrylamide (PAAM)-poly2-acrylamide-2-methylpropanesulfonic acid (PAMPS)/MnSO4 (PPM) hydrogel electrolyte not only has abundant hydrophilic groups that can form hydrogen bonds with free water and inhibit solvent-electrode interaction, but also has fixed anions that can maintain a certain interaction with protons. The assembled MoO3||MnO2 full battery can stably cycle over 500 times for ≈350 h with an unprecedented capacity retention of 100% even at a low current density of 0.5 A g-1. This work gives a hint that limiting free water as well as proton concentration is important for the design of electrolytes or interfaces in aqueous proton batteries.

5.
Small ; 20(13): e2304253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963821

ABSTRACT

Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L-1) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL-1). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.


Subject(s)
Neoplasms , Prodrugs , Sulfhydryl Compounds , Humans , Prodrugs/chemistry , Serum Albumin , Escherichia coli/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Maleimides/chemistry
6.
Nat Methods ; 18(1): 46-49, 2021 01.
Article in English | MEDLINE | ID: mdl-33408404

ABSTRACT

We have developed a miniature two-photon microscope equipped with an axial scanning mechanism and a long-working-distance miniature objective to enable multi-plane imaging over a volume of 420 × 420 × 180 µm3 at a lateral resolution of ~1 µm. Together with the detachable design that permits long-term recurring imaging, our miniature two-photon microscope can help decipher neuronal mechanisms in freely behaving animals.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Microscopy, Fluorescence, Multiphoton/methods , Miniaturization/methods , Neuroimaging/methods , Animals , Behavior, Animal , Brain/cytology , Cytological Techniques , Locomotion , Male , Mice , Mice, Inbred C57BL
7.
FASEB J ; 37(6): e22948, 2023 06.
Article in English | MEDLINE | ID: mdl-37130016

ABSTRACT

Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.


Subject(s)
Intestinal Diseases , Reperfusion Injury , Animals , Humans , Mice , Bryostatins/pharmacology , Caco-2 Cells , Inflammation/metabolism , Intestinal Diseases/prevention & control , Ischemia , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion , Reperfusion Injury/metabolism
8.
Biosci Biotechnol Biochem ; 88(7): 776-783, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38714325

ABSTRACT

Atherosclerosis (AS) is the major cause of multiple cardiovascular diseases. In addition, the lipid accumulation of human vascular smooth muscle cells (HVSMCs) can cause the occurrence of AS. Secreted frizzled-related protein 5 (Sfrp5) was known to be downregulated in AS; however, the detailed function of Sfrp5 in HVSMCs remains unclear. Specifically, we found that Sfrp5 expression in oxLDL-treated HVSMCs was downregulated. Sfrp5 overexpression inhibited the viability of HVSMCs induced by oxLDL. In addition, oxLDL-induced proliferation and migration in HVSMCs were abolished by Sfrp5 overexpression. Sfrp5 overexpression reduced oxLDL-caused oxidative stress, lipid accumulation, and inflammation in HVSMCs. Meanwhile, oxLDL treatment increased the expressions of Wnt5a, c-Myc, and ß-catenin in HVSMCs, while this phenomenon was rescued by Sfrp5 overexpression. Furthermore, the inhibitory effect of Sfrp5 upregulation on the viability and migration of HVSMCs was reversed by R-spondin 1. These results indicate that Sfrp5 overexpression could reverse oxLDL-induced lipid accumulation in HVSMCs through inactivating Wnt5a/ß-catenin signaling pathway.


Subject(s)
Cell Movement , Lipid Metabolism , Lipoproteins, LDL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Wnt-5a Protein , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxidative Stress , beta Catenin/metabolism , beta Catenin/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544872

ABSTRACT

The bZIP transcription factor ATF6α is a master regulator of endoplasmic reticulum (ER) stress response genes. In this report, we identify the multifunctional RNA polymerase II transcription factor Elongin as a cofactor for ATF6α-dependent transcription activation. Biochemical studies reveal that Elongin functions at least in part by facilitating ATF6α-dependent loading of Mediator at the promoters and enhancers of ER stress response genes. Depletion of Elongin from cells leads to impaired transcription of ER stress response genes and to defects in the recruitment of Mediator and its CDK8 kinase subunit. Taken together, these findings bring to light a role for Elongin as a loading factor for Mediator during the ER stress response.


Subject(s)
Activating Transcription Factor 6/metabolism , Elongin/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation , Mediator Complex/metabolism , RNA Polymerase II/metabolism , Activating Transcription Factor 6/genetics , Animals , Elongin/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , HeLa Cells , Humans , Mediator Complex/genetics , Promoter Regions, Genetic , RNA Polymerase II/genetics , Rats , Signal Transduction , Transcriptional Activation
10.
Biochem Genet ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411943

ABSTRACT

Non-small cell lung cancer (NSCLC) patients are characterized by distant metastasis and poor prognosis. Growing evidence has implied that circular RNAs (circRNAs) are involved in multiple tumor progression, including NSCLC. The objective of the present study was to functionally dissect the role and mechanism of circ_BLNK in NSCLC development and progression. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of circ_BLNK, miR-942-5p, and forkhead box protein O1 (FOXO1) in NSCLC tissues and cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay detected cell proliferation; the protein expression levels were tested by western blot assay; cell apoptosis was measured by flow cytometry, and transwell assay detected cell migration and invasion. The molecular targeting relationship was determined by dual-luciferase reporter assay. The effect of circ_BLNK overexpression on tumor growth was detected by in vivo experiments and immunohistochemistry. Circ_BLNK was dramatically decreased in NSCLC, and overexpression of circ_BLNK inhibited proliferation, migration, and invasion of NSCLC cells and promoted cell apoptosis. Circ_BLNK level was negatively correlated with miR-942-5p expression and positively correlated with FOXO1 expression. Moreover, circ_BLNK acted as a sponge for miR-942-5p, which targeted FOXO1. Rescue assays presented that miR-942-5p reversed the anticancer action of circ_BLNK in NSCLC. Besides that, miR-942-5p inhibition suppressed the oncogenic behaviors, which were attenuated by FOXO1 knockdown. Animal experiments exhibited that circ_BLNK upregulation repressed tumor growth in vivo. Our study demonstrated a novel regulatory mechanism that circ_BLNK/miR-942-5p/FOXO1 axis adjusted non-small cell lung cancer development.

11.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Article in English | MEDLINE | ID: mdl-36840366

ABSTRACT

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Subject(s)
Sympathetic Nervous System , Transcriptome , Animals , RNA, Messenger , In Situ Hybridization, Fluorescence , Ganglia, Sympathetic , Chickens
12.
Angew Chem Int Ed Engl ; 63(10): e202318186, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38179819

ABSTRACT

LiNi0.8 Co0.1 Mn0.1 O2 (NCM-811) exhibits the highest capacity in commercial lithium-ion batteries (LIBs), and the high Ni content (80 %) provides the only route for high energy density. However, the cationic structure instability arisen from the increase of Ni content (>80 %) limits the further increase of the capacity, and inevitable O2 release related to anionic structure instability hinders the utilization of anion redox activity. Here, by comparing various combinations of high-entropy dopants substituted Co element, we propose a low-electronegativity cationic high-entropy doping strategy to fabricate the high-Ni Co-free layered cathode (LiNi0.8 Mn0.12 Al0.02 Ti0.02 Cr0.02 Fe0.02 O2 ) that exhibits much higher capacity and cycling stability. Configurational disorder originated from cationic high-entropy doping in transition metal (TM) layer, anchors the oxidized lattice oxygen ((O2 )n- ) to preserve high (O2 )n- content, triggering the anion redox activity. Electron transfer induced by applying TM dopants with lower electronegativity than that of Co element, increases the electron density of O in TM-O octahedron (TM-O6 ) configuration to reach higher (O2 )n- content, resulting in the higher anion redox activity. With exploring the stabilization effect on both cations and anions of high-entropy doping and low-electronegativity cationic modified anion redox activity, we propose an innovative and variable pathway for rationally tuning the properties of commercial cathodes.

13.
J Cell Mol Med ; 27(22): 3431-3442, 2023 11.
Article in English | MEDLINE | ID: mdl-37596794

ABSTRACT

The high rates of misdiagnosis and untreated mortality with regard to Budd-Chiari syndrome (BCS) indicated the need to screen effective biomarkers. The aim of this study was to explore the function of extracellular vesicles (EVs) in patients with BCS as well as associated mechanisms. First, differentially expressed long non-coding RNAs (lncRNAs) from EVs separated from serum between BCS and healthy controls were screened using microarray analysis. Second, the proliferation, migration and tube formation of human vascular endothelial cells (HUVECs) were detected after EVs treatment, along with vascular endothelial growth factor (VEGF) levels and inflammatory factors from the cell supernatant. Last, the overexpressed lncRNA was transfected into the cells to further explore the mechanisms involved. Extracellular vesicles of BCS patients have significantly higher levels of lncRNA MTUS2-5 than healthy controls. Apparently, treatment with EVs from BCS or the ones transfected with plasmids that overexpress lncRNA MTUS2-5 enhances proliferation, migration and angiogenesis capacity. The results were considerably better than those obtained from treatment with EVs from healthy controls or transfection with the normal control plasmid, which also elevated the level of VEGF and inflammatory factors. Furthermore, FOS and PTGS2 were potentially regulated by the lncRNA MTUS2-5 transmitted by EVs. The lncRNA MTUS2-5 in EVs plays an important role in angiogenesis in the Budd-Chiari syndrome.


Subject(s)
Budd-Chiari Syndrome , Extracellular Vesicles , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endothelial Cells/metabolism , Budd-Chiari Syndrome/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Neovascularization, Pathologic/metabolism , Cell Proliferation/genetics
14.
Funct Integr Genomics ; 23(3): 269, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37552345

ABSTRACT

It is well-established that breast cancer is a highly prevalent malignancy among women, emphasizing the need to investigate mechanisms underlying its pathogenesis and metastasis. In this study, the Gene Expression Omnibus (GEO) database was utilized to conduct differential expression analysis in breast cancer and adjacent tissues. Upregulated genes were selected for prognostic analysis of breast cancer. The expression of urokinase plasminogen activator receptor (uPAR), also known as PLAUR, was assessed using RT-qPCR and western blot. Immunofluorescence staining was employed to determine PLAUR localization. Various cellular processes were analyzed, including proliferation, migration, invasion, apoptosis, and cell cycle. Bioinformatics analysis was used to predict transcription factors of PLAUR, which were subsequently validated in a double luciferase reporter gene experiment. Rescue experiments confirmed the impact of PLAUR on the proliferation, apoptosis, and migration of MDA-MB-231 cells. Furthermore, the effects of PLAUR were evaluated in an orthotopic tumor transplantation and lung metastasis nude mouse model. Our findings substantiated the critical involvement of PLAUR in the progression of triple-negative breast cancer (TNBC) in vitro and among TNBC patients with a poor prognosis. Additionally, we demonstrated Yin Yang-1 (YY1) as a notable transcriptional regulator of PLAUR, whose activation could transcriptionally enhance the proliferation and invasion capabilities of TNBC cells. We also identified the downstream mechanism of PLAUR associated with PLAU, focal adhesion kinase (FAK), and AKT. Overall, these findings offer a novel perspective on PLAUR as a potential therapeutic target for TNBC.


Subject(s)
Lung Neoplasms , Receptors, Urokinase Plasminogen Activator , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Signal Transduction , Triple Negative Breast Neoplasms/genetics , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism
15.
Proc Natl Acad Sci U S A ; 117(7): 3603-3609, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015133

ABSTRACT

5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding-defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.


Subject(s)
5-Methylcytosine/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Ovum/growth & development , RNA/metabolism , Animals , Cell Proliferation , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Humans , Ovary/metabolism , Ovum/metabolism , RNA/genetics , Stem Cells/cytology , Stem Cells/metabolism , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
16.
Nano Lett ; 22(11): 4333-4339, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35584407

ABSTRACT

Achieving metal nanocrystals with metastable phase draws much attention due to their anticipated fascinating properties, wheras it is still challenging because their polymorphism nature and phase transition mechanism remain elusive. Here, phase stability of face-centered cubic (fcc) Pd nanocrystals was studied via in situ spherical aberration (Cs)-corrected transmission electron microscopy (TEM). By constructing a well-defined Pd/C composite structure, Pd nanocrystals encapsulated by graphite, the dispersion process of fcc Pd was observed through a nucleation and growth process. Interestingly, Cs-corrected scanning TEM analysis demonstrated that the newly formed Pd nanocrystals could adopt a metastable hexagonal phase, which was considered challenging to obtain. Accordingly, formation mechanism of the hexagonal Pd nanocrystals was proposed, which involved the combined effect of two factors: (1) templating of graphite and (2) size effect. This work is expected to offer new insight into the polymorphism of Pd nanocrystals and pave the way for the future design of metastable metal nanomaterials.


Subject(s)
Graphite , Metal Nanoparticles , Nanostructures , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Nanostructures/chemistry , Phase Transition
17.
J Hepatol ; 77(3): 619-631, 2022 09.
Article in English | MEDLINE | ID: mdl-35452693

ABSTRACT

BACKGROUND & AIMS: Vacuole membrane protein 1 (VMP1) is an endoplasmic reticulum (ER) transmembrane protein that regulates the formation of autophagosomes and lipid droplets. Recent evidence suggests that VMP1 plays a critical role in lipoprotein secretion in zebra fish and cultured cells. However, the pathophysiological roles and mechanisms by which VMP1 regulates lipoprotein secretion and lipid accumulation in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are unknown. METHODS: Liver-specific and hepatocyte-specific Vmp1 knockout mice as well as Vmp1 knock-in mice were generated by crossing Vmp1flox or Vmp1KI mice with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid and energy metabolism in these mice were characterized by metabolomic and transcriptome analyses. Mice with hepatic overexpression of VMP1 who were fed a NASH diet were also characterized. RESULTS: Hepatocyte-specific deletion of Vmp1 severely impaired VLDL secretion resulting in massive hepatic steatosis, hepatocyte death, inflammation and fibrosis, which are hallmarks of NASH. Mechanistically, loss of Vmp1 led to decreased hepatic levels of phosphatidylcholine and phosphatidylethanolamine as well as to changes in phospholipid composition. Deletion of Vmp1 in mouse liver also led to the accumulation of neutral lipids in the ER bilayer and impaired mitochondrial beta-oxidation. Overexpression of VMP1 ameliorated steatosis in diet-induced NASH by improving VLDL secretion. Importantly, we also showed that decreased liver VMP1 is associated with NAFLD/NASH in humans. CONCLUSIONS: Our results provide novel insights on the role of VMP1 in regulating hepatic phospholipid synthesis and lipoprotein secretion in the pathogenesis of NAFLD/NASH. LAY SUMMARY: Non-alcoholic fatty liver disease and its more severe form, non-alcoholic steatohepatitis, are associated with a build-up of fat in the liver (steatosis). However, the exact mechanisms that underly steatosis in patients are not completely understood. Herein, the authors identified that the lack of a protein called VMP1 impairs the secretion and metabolism of fats in the liver and could therefore contribute to the development and progression of non-alcoholic fatty liver disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Lipoproteins/metabolism , Liver/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Phospholipids/metabolism
18.
BMC Cardiovasc Disord ; 22(1): 107, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35291946

ABSTRACT

BACKGROUND: SERPINB1 is involved in the development of a variety of diseases. The purpose of this study was to explore the effect of SERPINB1 on acute myocardial infarction (AMI). METHODS: Serum SERPINB1 level of AMI patients was measured for receiver operating characteristic curve analysis. The AMI rat model was constructed to observe myocardial damage, and the H9C2 cell oxygen glucose deprivation (OGD) model was constructed to detect cell viability. Transthoracic echocardiography was used to assess the cardiac function. TTC staining and HE staining were used to detect pathologic changes of myocardial tissues. The apoptosis of myocardial tissues and cells were measured by TUNLE staining and flow cytometry assay. CCK-8 assay to measure cell viability. SERPINB1 expression was measured by qRT-PCR. Protein expression was measured by western blot. RESULTS: The serum SERPINB1 level was down-regulated in AMI patients. AMI modeling reduced the SERPINB1 expression level, induced inflammatory cells infiltrated, and myocardial apoptosis. OGD treatment inhibited cell viability and promoted apoptosis. The AMPK/mTOR pathway was inhibited in AMI rats and OGD-treated H9C2 cells. Overexpression of SERPINB1 reduced infarct size and myocardial apoptosis of AMI rats, inhibited apoptosis of H9C2 cells, and activated AMPK/mTOR pathway. However, AMPK inhibitor Dorsomorphin reversed the protective effect of SERPINB1 on myocardial cells. CONCLUSION: SERPINB1 overexpression relieved myocardial damage induced by AMI via AMPK/mTOR pathway.


Subject(s)
MicroRNAs , Myocardial Infarction , Serpins , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Humans , MicroRNAs/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Rats , Serpins/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
19.
BMC Pulm Med ; 21(1): 163, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33992097

ABSTRACT

BACKGROUND: ID1 is associated with resistance to the first generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, the effect of ID1 expression on osimertinib resistance in EGFR T790M-positive NSCLC is not clear. METHODS: We established a drug-resistant cell line, H1975/OR, from the osimertinib-sensitive cell line H1975. Alterations in ID1 protein expression and Epithelial-mesenchymal transition (EMT)-related proteins were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA levels. ID1 silencing and overexpression were used to investigate the effects of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess the proliferation rate in cells with altered of ID1 expression. Transwell assay was used to evaluate the invasion ability of different cells. The effects on the cell cycle and apoptosis were also compared using flow cytometry. RESULTS: In our study, we found that in osimertinib-resistant NSCLC cells, the expression level of the EMT-related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin were higher than those of sensitive cells. ID1 expression levels was closely related to E-cadherin and vimentin in both osimertinib-sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression in H1975/OR cells could inhibit cell proliferation, reduce cell invasion, promote cell apoptosis and arrested the cell cycle in the G1/G0 stage phase. Our study suggests that ID1 may induce EMT in EGFR T790M-positive NSCLC, which mediates drug resistance of osimertinib. CONCLUSIONS: Our study revealed the mechanism of ID1 mediated resistance to osimertinib in EGFR T790M-positive NSCLC through EMT, which may provide new ideas and methods for the treatment of EGFR mutated NSCLC after osimertinib resistance.


Subject(s)
Acrylamides/pharmacology , Aniline Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Inhibitor of Differentiation Protein 1/metabolism , Lung Neoplasms/drug therapy , Apoptosis , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/genetics , Humans , Inhibitor of Differentiation Protein 1/genetics , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology
20.
Angew Chem Int Ed Engl ; 60(41): 22339-22344, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34352928

ABSTRACT

The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL