Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38477330

ABSTRACT

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

2.
Small ; 20(25): e2308727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229134

ABSTRACT

T-Nb2O5 characterized by the pronounced intercalation pseudocapacitance effect, is regarded as a promising and alternative anode for fast-charging Li-ion batteries. However, its electrochemical kinetics are still hindered by the absence of sufficient and homogenous conductive wiring inside active microparticles. Herein, an in situ pillaring strategy of electronic nano-wires is proposed to slice T-Nb2O5 laminated particles for the development of durable and fast-charging anodes for Li-ion batteries. A micro-level layered structure consisting of nano-carbon-inserted T-Nb2O5 composite flakes is designed and enabled by successive ion exchange, slice exfoliation, in situ polymerization, and carbonization processes. The pillared carbon interlayer (derived from polyaniline) can serve as in-built conductive wires to promote and homogenize electron transfer inside the micro-level particles. The porous structure (formed by the self-assembly of exfoliated flakes) contributes to the improved electrolyte immersion and enhanced lithium migration. Benefitting from the kinetically favorable effects, the modified T-Nb2O5 anode achieves the high-rate capability (108.4 mAh g-1 at 10 A g-1) and ultralong cycling durability (138 mAh g-1 at 1.0 A g-1 after 8000 cycles, with an average capacity decaying rate as small as 0.043‰). This work provides an effective strategy of electron wire pillaring with the slicing effect for laminated electrode materials with high tap density.

3.
Small ; 20(11): e2306690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37926792

ABSTRACT

Non-aqueous solvents, in particular N,N-dimethylaniline (NMP), are widely applied for electrode fabrication since most sodium layered oxide cathode materials are readily damaged by water molecules. However, the expensive price and poisonousness of NMP unquestionably increase the cost of preparation and post-processing. Therefore, developing an intrinsically stable cathode material that can implement the water-soluble binder to fabricate an electrode is urgent. Herein, a stable nanosheet-like Mn-based cathode material is synthesized as a prototype to verify its practical applicability in sodium-ion batteries (SIBs). The as-prepared material displays excellent electrochemical performance and remarkable water stability, and it still maintains a satisfactory performance of 79.6% capacity retention after 500 cycles even after water treatment. The in situ X-ray diffraction (XRD) demonstrates that the synthesized material shows an absolute solid-solution reaction mechanism and near-zero-strain. Moreover, the electrochemical performance of the electrode fabricated with a water-soluble binder shows excellent long-cycling stability (67.9% capacity retention after 500 cycles). This work may offer new insights into the rational design of marvelous water stability cathode materials for practical SIBs.

4.
Angew Chem Int Ed Engl ; : e202410590, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888029

ABSTRACT

Iron-based mixed polyanion phosphate Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a promising cathode for Sodium-ion Batteries (SIBs) due to its low cost and environmental friendliness. However, its inherent low conductivity and sluggish Na+ diffusion limit fast charge and low-temperature sodium storage. This study pioneers a scalable synthesis of hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space (THoCS-0.6Ni) via a one-step spray-drying combined with calcination process due to the different viscosity, coordination ability, molar ratios, and shrinkage rates between citric acid and polyvinylpyrrolidone. This unique structure with interconnected carbon networks ensures rapid electron transport and fast Na+ diffusion, as well as efficient space utilization for relieve volume expansion. Incorporating regulation of lattice structure by doping Ni heteroatom to effectively improve intrinsic electron and Na+ diffusion path and energy barrier, which achieves fast charge and low-temperature sodium storage. As a result, THoCS-0.6Ni exhibits superior rate capability (86.4 mAh g-1 at 25 C). Notably, THoCS-0.6Ni demonstrates exceptional cycling stability at -20 °C with a capacity of 43.6 mAh g-1 after 2500 cycles at 5 C. This work provides a universal strategy to design the hollow core-shelled structure with tiny-void space cathode materials for reversible batteries with fast-charge and low-temperature storage features.

5.
Angew Chem Int Ed Engl ; 63(11): e202320183, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38265307

ABSTRACT

Alloying-type antimony (Sb) with high theoretical capacity is a promising anode candidate for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Given the larger radius of Na+ (1.02 Å) than Li+ (0.76 Å), it was generally believed that the Sb anode would experience even worse capacity degradation in SIBs due to more substantial volumetric variations during cycling when compared to LIBs. However, the Sb anode in SIBs unexpectedly exhibited both better electrochemical and structural stability than in LIBs, and the mechanistic reasons that underlie this performance discrepancy remain undiscovered. Here, using substantial in situ transmission electron microscopy, X-ray diffraction, and Raman techniques complemented by theoretical simulations, we explicitly reveal that compared to the lithiation/delithiation process, sodiation/desodiation process of Sb anode displays a previously unexplored two-stage alloying/dealloying mechanism with polycrystalline and amorphous phases as the intermediates featuring improved resilience to mechanical damage, contributing to superior cycling stability in SIBs. Additionally, the better mechanical properties and weaker atomic interaction of Na-Sb alloys than Li-Sb alloys favor enabling mitigated mechanical stress, accounting for enhanced structural stability as unveiled by theoretical simulations. Our finding delineates the mechanistic origins of enhanced cycling stability of Sb anode in SIBs with potential implications for other large-volume-change electrode materials.

6.
Small ; 19(30): e2300843, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37035959

ABSTRACT

Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.

7.
Small ; : e2308953, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072790

ABSTRACT

Organic compounds are regarded as important candidates for potassium-ion batteries (KIBs) due to their light elements, controllable polymerization, and tunable functional groups. However, intrinsic drawbacks largely restrict their application, including possible solubility in electrolytes, poor conductivity, and low diffusion coefficients. To address these issues, an ultrathin layered pyrazine/carbonyl-rich material (CT) is synthesized via an acid-catalyzed solvothermal reaction and homogeneously grown on carbon nanotubes (CNTs), marked as CT@CNT. Such materials have shown good features of exposing functional groups to guest ions and good electron transport paths, exhibiting high reversible capacity and remarkable rate capability over a wide temperature range. Two typical electrolytes are compared, demonstrating that the electrolyte of LX-146 is more suitable to maximize the electrochemical performances of electrodes at different temperatures. A stepwise reaction mechanism of K-chelating with C═O and C═N functional groups is proposed, verified by in/ex situ spectroscopic techniques and theoretical calculations, illustrating that pyrazines and carbonyls play the main roles in reacting with K+ cations, and CNTs promote conductivity and restrain electrode dissolution. This study provides new insights to understand the K-storage behaviors of organic compounds and their "all-temperature" application.

8.
Small ; 18(29): e2202151, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35748132

ABSTRACT

Li3 V2 (PO4 )3 (LVP) is a promising cathode material for lithium-ion batteries, especially when used in a wide temperature range, due to its high intrinsic ionic mobility and theoretical capacity. Herein, Ru- and Cl-codoped Li3 V2 (PO4 )3 (LVP-Rux -Cl3 x ) coated with/without a nitrogen-doped carbon (NC) layer are synthesized. Among them, the optimized sample (LVP-Ru0.05 -Cl0.15 @NC) delivers remarkable performances at both room temperature and extreme temperatures (-40, 25, and 60 °C), indicating temperature adaptability. It achieves intriguing capacities (49 mAh g-1 at -40 °C, 128 mAh g-1 at 25 °C, and 123 mAh g-1 at 60 °C, all at 0.5 C), long cycle life (94% capacity retention after 2000 cycles at 25 °C and 5 C), and high-rate capabilities (up to 20 C). The structural evolution features and capacity loss mechanisms of LVP-Ru0.05 -Cl0.15 @NC are further investigated using in situ X-ray diffraction (XRD) at different temperatures (-10, 25, and 60 °C) during redox reactions. Theoretical calculations elucidate that Ru- and Cl-codoping can greatly improve the intrinsic diffusion coefficient of LVP by reducing its bandgap energy and lowering the energy barrier of lithium-ion diffusion. In "all-weather" conditions, the dual-element co-doping strategy is critical for increasing electrochemical performance.

9.
Chemistry ; 21(4): 1526-32, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25445256

ABSTRACT

A mesoporous flake-like manganese-cobalt composite oxide (MnCo2O4) is synthesized successfully through the hydrothermal method. The crystalline phase and morphology of the materials are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller methods. The flake-like MnCo2O4 is evaluated as the anode material for lithium-ion batteries. Owing to its mesoporous nature, it exhibits a high reversible capacity of 1066 mA h g(-1), good rate capability, and superior cycling stability. As an electrode material for supercapacitors, the flake-like MnCo2O4 also demonstrates a high supercapacitance of 1487 F g(-1) at a current density of 1 A g(-1), and an exceptional cycling performance over 2000 charge/discharge cycles.

10.
Chemphyschem ; 16(1): 169-75, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25369782

ABSTRACT

A facile microwave method was employed to synthesize NiCo2 O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller methods. Owing to the porous nanosheet structure, the NiCo2 O4 electrodes exhibited a high reversible capacity of 891 mA h g(-1) at a current density of 100 mA g(-1) , good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2 O4 nanosheets demonstrated a specific capacitance of 400 F g(-1) at a current density of 20 A g(-1) and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode-electrolyte contact area and facilitate rapid ion transport.

11.
Nano Lett ; 14(6): 3145-52, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24854426

ABSTRACT

The electrochemical performance of lithium-oxygen (Li-O2) batteries awaits dramatic improvement in the design of porous cathode electrodes with sufficient spaces to accommodate the discharge products and discovery of effective cathode catalysts to promote both oxygen reduction reactions and oxygen evolution reactions. Herein, we report the synthesis of porous graphene with different pore size architectures as cathode catalysts for Li-O2 batteries. Porous graphene materials exhibited significantly higher discharge capacities than that of nonporous graphene. Furthermore, porous graphene with pore diameter around 250 nm showed the highest discharge capacity among the porous graphene with the small pores (about 60 nm) and large pores (about 400 nm). Moreover, we discovered that addition of ruthenium (Ru) nanocrystals to porous graphene promotes the oxygen evolution reaction. The Ru nanocrystal-decorated porous graphene exhibited an excellent catalytic activity as cathodes in Li-O2 batteries with a high reversible capacity of 17,700 mA h g(-1), a low charge/discharge overpotential (about 0.355 V), and a long cycle life up to 200 cycles (under the curtaining capacity of 1000 mAh g(-1)). The novel porous graphene architecture inspires the development of high-performance Li-O2 batteries.

12.
Adv Sci (Weinh) ; 11(3): e2306168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997201

ABSTRACT

The two-phase reaction of Na3 V2 (PO4 )3 - Na1 V2 (PO4 )3 in Na3 V2 (PO4 )3 (NVP) is hindered by low electronic and ionic conductivity. To address this problem, a surface-N-doped NVP encapsulating by N-doped carbon nanocage (N-NVP/N-CN) is rationally constructed, wherein the nitrogen is doped in both the surface crystal structure of NVP and carbon layer. The surface crystal modification decreases the energy barrier of Na+ diffusion from bulk to electrolyte, enhances intrinsic electronic conductivity, and releases lattice stress. Meanwhile, the porous architecture provides more active sites for redox reactions and shortens the diffusion path of ion. Furthermore, the new interphase of Na2 V2 (PO4 )3 is detected by in situ XRD and clarified by density functional theory (DFT) calculation with a lower energy barrier during the fast reversible electrochemical three-phase reaction of Na3 V2 (PO4 )3 - Na2 V2 (PO4 )3 - Na1 V2 (PO4 )3 . Therefore, as cathode of sodium-ion battery, the N-NVP/N-CN exhibited specific capacities of 119.7 and 75.3 mAh g-1 at 1 C and even 200 C. Amazingly, high capacities of 89.0, 86.2, and 84.6 mAh g-1 are achieved after overlong 10000 cycles at 20, 40, and 50 C, respectively. This approach provides a new idea for surface crystal modification to cast intermediate Na2 V2 (PO4 )3 phase for achieving excellent cycling stability and rate capability.

13.
ACS Nano ; 18(16): 10863-10873, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613506

ABSTRACT

A Na4MnV(PO4)3 (NMVP) cathode is regarded as a promising cathode candidate for sodium-ion batteries (SIBs). However, issues such as low electronic conductivity and partial cation dissolution contribute to high polarization and structure distortion. Herein, we engineered the local electron density and reaction kinetic properties of NMVP cathodes with varying oxygen vacancies by introducing varying amounts of Zr doping and carbon coating. The optimized sample exhibited a high-rate capacity of 71.8 mAh g-1 at 30 C (83.1% capacity retention after 1000 cycles) and excellent performance over a wide temperature range (84.1 mAh g-1 at 60 °C and 61.4 mAh g-1 at -30 °C). In situ X-ray diffraction technology confirmed a redox solid solution and a two-phase reaction mechanism, revealing minor changes in cell volume and slight strain variations after Zr doping, effectively suppressing the structural distortion. Theoretical calculations illustrated that Zr doping largely shrinks the band gap of NMVP, enriches local electron density, and slightly alters the local element distribution and bond lengths. Moreover, full-cells have shown high energy density (259.9 Wh kg-1) and outstanding cycling stability (200 cycles). The work provides fresh insights into the synergistic effect of strain suppressing and interface engineering in promoting the development of wide temperature range and long-calendar-life SIBs.

14.
Adv Mater ; 36(23): e2313835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427844

ABSTRACT

Multinary metal chalcogenides hold considerable promise for high-energy potassium storage due to their numerous redox reactions. However, challenges arise from issues such as volume expansion and sluggish kinetics. Here, a design featuring a layered ternary Bi0.4Sb1.6Te3 anchored on graphene layers as a composite anode, where Bi atoms act as a lattice softening agent on Sb, is presented. Benefiting from the lattice arrangement in Bi0.4Sb1.6Te3 and structure, Bi0.4Sb1.6Te3/graphene exhibits a mitigated expansion of 28% during the potassiation/depotassiation process and demonstrates facile K+ ion transfer kinetics, enabling long-term durability of 500 cycles at various high rates. Operando synchrotron diffraction patterns and spectroscopies including in situ Raman, ex situ adsorption, and X-ray photoelectron reveal multiple conversion and alloying/dealloying reactions for potassium storage at the atomic level. In addition, both theoretical calculations and electrochemical examinations elucidate the K+ migration pathways and indicate a reduction in energy barriers within Bi0.4Sb1.6Te3/graphene, thereby suggesting enhanced diffusion kinetics for K+. These findings provide insight in the design of durable high-energy multinary tellurides for potassium storage.

15.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577355

ABSTRACT

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

16.
Mater Horiz ; 10(10): 4589-4596, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37591818

ABSTRACT

The exploitation of highly active bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic media has been a subject receiving immense interest. However, the existing catalysts usually suffer from low catalytic efficiency and poor corrosion resistance under acidic conditions. Herein, we report a facile molten salt method to fabricate ruthenium dioxide nanoparticles supported by hierarchically porous carbon (RuO2/PC) as a bifunctional electrocatalyst for full water splitting under strong acidic conditions. The formation of a densely populated nanocrystalline RuO2/carbon heterostructure helps expose catalytic sites, accelerates the mass transfer rate, and further enhances the acid resistance of RuO2 nanoparticles. The as-synthesized RuO2/PC consequently exhibits superior catalytic performance for the OER with an overpotential of 181 mV upon 10 mA cm-2 compared to that of the commercial RuO2 (343 mV) and a comparable performance to Pt/C for the HER (47.5 mV upon 10 mA cm-2) in 0.5 M H2SO4. The RuO2/PC shows promising stability with little degradation over ∼24 h. Impressively, the water electrolyzer based on RuO2/PC shows an overpotential of 326 mV at 10 mA cm-2, much lower than that of the electrolyzer based on the combination of Pt/C and RuO2 (400 mV), indicating its great potential towards practical application.

17.
Nanomaterials (Basel) ; 13(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111018

ABSTRACT

Germanium-based multi-metallic-oxide materials have advantages of low activation energy, tunable output voltage, and high theoretical capacity. However, they also exhibit unsatisfactory electronic conductivity, sluggish cation kinetics, and severe volume change, resulting in inferior long-cycle stability and rate performance in lithium-ion batteries (LIBs). To solve these problems, we synthesize metal-organic frameworks derived from rice-like Zn2GeO4 nanowire bundles as the anode of LIBs via a microwave-assisted hydrothermal method, minimizing the particle size and enlarging the cation's transmission channels, as well as, enhancing the electronic conductivity of the materials. The obtained Zn2GeO4 anode exhibits superior electrochemical performance. A high initial charge capacity of 730 mAhg-1 is obtained and maintained at 661 mAhg-1 after 500 cycles at 100 mA g-1 with a small capacity degradation ratio of ~0.02% for each cycle. Moreover, Zn2GeO4 exhibits a good rate performance, delivering a high capacity of 503 mA h g-1 at 5000 mA g-1. The good electrochemical performance of the rice-like Zn2GeO4 electrode can be attributed to its unique wire-bundle structure, the buffering effect of the bimetallic reaction at different potentials, good electrical conductivity, and fast kinetic rate.

18.
ACS Nano ; 17(13): 12483-12498, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37326660

ABSTRACT

Ternary metal sulfides (TMSs), endowed with the synergistic effect of their respective binary counterparts, hold great promise as anode candidates for boosting sodium storage performance. Their fundamental sodium storage mechanisms associated with dynamic structural evolution and reaction kinetics, however, have not been fully comprehended. To enhance the electrochemical performance of TMS anodes in sodium-ion batteries (SIBs), it is of critical importance to gain a better mechanistic understanding of their dynamic electrochemical processes during live (de)sodiation cycling. Herein, taking BiSbS3 anode as a representative paradigm, its real-time sodium storage mechanisms down to the atomic scale during the (de)sodiation cycling are systematically elucidated through in situ transmission electron microscopy. Previously unexplored multiple phase transformations involving intercalation, two-step conversion, and two-step alloying reactions are explicitly revealed during sodiation, in which newly formed Na2BiSbS4 and Na2BiSb are respectively identified as intermediate phases of the conversion and alloying reactions. Impressively, the final sodiation products of Na6BiSb and Na2S can recover to the original BiSbS3 phase upon desodiation, and afterward, a reversible phase transformation can be established between BiSbS3 and Na6BiSb, where the BiSb as an individual phase (rather than respective Bi and Sb phases) participates in reactions. These findings are further verified by operando X-ray diffraction, density functional theory calculations, and electrochemical tests. Our work provides valuable insights into the mechanistic understanding of sodium storage mechanisms in TMS anodes and important implications for their performance optimization toward high-performance SIBs.

19.
Adv Sci (Weinh) ; 10(24): e2302215, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37337394

ABSTRACT

Sulfur cathodes in Li-S batteries suffer significant volumetric expansion and lack of catalytic activity for polysulfide conversion. In this study, a confined self-reduction synthetic route is developed for preparing nanocomposites using diverse metal ions (Mn2+ , Co2+ , Ni2+ , and Zn2+ )-introduced Al-MIL-96 as precursors. The Ni2+ -introduced Al-MIL-96-derived nanocomposite contains a "hardness unit", amorphous aluminum oxide framework, to restrain the volumetric expansion, and a "softness unit", Ni nanocrystals, to improve the catalytic activity. The oxygen-potential diagram theoretically explains why Ni2+ is preferentially reduced. Postmortem microstructure characterization confirms the suppressive volume expansion. The in situ ultraviolet-visible measurements are performed to probe the catalytic activity of polysulfide conversion. This study provides a new perspective for designing nanocomposites with "hardness units" and "softness units" as sulfur or other catalyst hosts.

20.
ACS Nano ; 17(16): 15871-15882, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37526621

ABSTRACT

Due to their high capacity and sufficient Na+ storage, O3-NaNi0.5Mn0.5O2 has attracted much attention as a viable cathode material for sodium-ion batteries (SIBs). However, the challenges of complicated irreversible multiphase transitions, poor structural stability, low operating voltage, and an unstable oxygen redox reaction still limit its practical application. Herein, using O3-NaNi0.5Mn0.5-xSnxO2 cathode materials as the research model, a universal strategy based on bridging microstructure engineering and local electronic structure manipulation is proposed. The strategy can modulate the physical and chemical properties of electrode materials, so as to restrain the unfavorable and irreversible multiphase transformation, improve structural stability, manipulate redox potential, and stabilize the anion redox reaction. The effect of Sn substitution on the intrinsic local electronic structure of the material is articulated by density functional theory calculations. Meanwhile, the universal strategy is also validated by Ti substitution, which could be further extrapolated to other systems and guide the design of cathode materials in the field of SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL