Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 181(7): 1680-1692.e15, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589958

ABSTRACT

Metabolism during pregnancy is a dynamic and precisely programmed process, the failure of which can bring devastating consequences to the mother and fetus. To define a high-resolution temporal profile of metabolites during healthy pregnancy, we analyzed the untargeted metabolome of 784 weekly blood samples from 30 pregnant women. Broad changes and a highly choreographed profile were revealed: 4,995 metabolic features (of 9,651 total), 460 annotated compounds (of 687 total), and 34 human metabolic pathways (of 48 total) were significantly changed during pregnancy. Using linear models, we built a metabolic clock with five metabolites that time gestational age in high accordance with ultrasound (R = 0.92). Furthermore, two to three metabolites can identify when labor occurs (time to delivery within two, four, and eight weeks, AUROC ≥ 0.85). Our study represents a weekly characterization of the human pregnancy metabolome, providing a high-resolution landscape for understanding pregnancy with potential clinical utilities.


Subject(s)
Gestational Age , Metabolomics/methods , Pregnancy/metabolism , Adult , Biomarkers/blood , Female , Fetus/metabolism , Humans , Metabolic Networks and Pathways/physiology , Metabolome/physiology , Pregnant Women
2.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470399

ABSTRACT

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Subject(s)
Energy Metabolism/physiology , Exercise/physiology , Aged , Biomarkers/metabolism , Female , Humans , Insulin/metabolism , Insulin Resistance , Leukocytes, Mononuclear/metabolism , Longitudinal Studies , Male , Metabolome , Middle Aged , Oxygen/metabolism , Oxygen Consumption , Proteome , Transcriptome
3.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31378462

ABSTRACT

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Subject(s)
Codon, Terminator , Drosophila Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/metabolism , Proteostasis Deficiencies/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , HeLa Cells , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism
4.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
5.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35947990

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics provides systematic profiling of metabolic. Yet, its applications in precision medicine (disease diagnosis) have been limited by several challenges, including metabolite identification, information loss and low reproducibility. Here, we present the deep-learning-based Pseudo-Mass Spectrometry Imaging (deepPseudoMSI) project (https://www.deeppseudomsi.org/), which converts LC-MS raw data to pseudo-MS images and then processes them by deep learning for precision medicine, such as disease diagnosis. Extensive tests based on real data demonstrated the superiority of deepPseudoMSI over traditional approaches and the capacity of our method to achieve an accurate individualized diagnosis. Our framework lays the foundation for future metabolic-based precision medicine.


Subject(s)
Deep Learning , Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Precision Medicine , Reproducibility of Results
6.
Bioinformatics ; 38(2): 568-569, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34432001

ABSTRACT

SUMMARY: Accurate and efficient compound annotation is a long-standing challenge for LC-MS-based data (e.g. untargeted metabolomics and exposomics). Substantial efforts have been devoted to overcoming this obstacle, whereas current tools are limited by the sources of spectral information used (in-house and public databases) and are not automated and streamlined. Therefore, we developed metID, an R package that combines information from all major databases for comprehensive and streamlined compound annotation. metID is a flexible, simple and powerful tool that can be installed on all platforms, allowing the compound annotation process to be fully automatic and reproducible. A detailed tutorial and a case study are provided in Supplementary Materials. AVAILABILITY AND IMPLEMENTATION: https://jaspershen.github.io/metID. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Tandem Mass Spectrometry , Chromatography, Liquid , Metabolomics , Databases, Factual
7.
Proc Natl Acad Sci U S A ; 117(40): 25104-25115, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958650

ABSTRACT

Maintaining the fidelity of nascent peptide chain (NP) synthesis is essential for proteome integrity and cellular health. Ribosome-associated quality control (RQC) serves to resolve stalled translation, during which untemplated Ala/Thr residues are added C terminally to stalled peptide, as shown during C-terminal Ala and Thr addition (CAT-tailing) in yeast. The mechanism and biological effects of CAT-tailing-like activity in metazoans remain unclear. Here we show that CAT-tailing-like modification of poly(GR), a dipeptide repeat derived from amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD)-associated GGGGCC (G4C2) repeat expansion in C9ORF72, contributes to disease. We find that poly(GR) can act as a mitochondria-targeting signal, causing some poly(GR) to be cotranslationally imported into mitochondria. However, poly(GR) translation on mitochondrial surface is frequently stalled, triggering RQC and CAT-tailing-like C-terminal extension (CTE). CTE promotes poly(GR) stabilization, aggregation, and toxicity. Our genetic studies in Drosophila uncovered an important role of the mitochondrial protease YME1L in clearing poly(GR), revealing mitochondria as major sites of poly(GR) metabolism. Moreover, the mitochondria-associated noncanonical Notch signaling pathway impinges on the RQC machinery to restrain poly(GR) accumulation, at least in part through the AKT/VCP axis. The conserved actions of YME1L and noncanonical Notch signaling in animal models and patient cells support their fundamental involvement in ALS/FTD.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Drosophila Proteins/genetics , Frontotemporal Dementia/genetics , Metalloendopeptidases/genetics , Mitochondrial Proteins/genetics , Proteome/genetics , Receptors, Notch/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Arginine/genetics , DNA Repeat Expansion/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , HEK293 Cells , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction/genetics
8.
Tumour Biol ; 39(5): 1010428317705330, 2017 May.
Article in English | MEDLINE | ID: mdl-28513299

ABSTRACT

Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cisplatin/administration & dosage , Diterpenes/administration & dosage , Ki-67 Antigen/biosynthesis , Mouth Neoplasms/drug therapy , Tumor Suppressor Protein p53/biosynthesis , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Phosphorylation , Tumor Suppressor Protein p53/administration & dosage , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
9.
Analyst ; 142(22): 4308-4316, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29053159

ABSTRACT

A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.


Subject(s)
Carcinoembryonic Antigen/analysis , Immunoassay , Nucleic Acid Amplification Techniques , Nucleic Acid Hybridization , Peptide Nucleic Acids/chemistry , Biosensing Techniques , Electrochemical Techniques , Ferrous Compounds/chemistry , Humans , Metallocenes/chemistry , Tin Compounds/chemistry
10.
J Am Chem Soc ; 138(17): 5585-93, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27059121

ABSTRACT

Regioselectivity is of fundamental importance in chemical synthesis. Although many concepts for site-selective reactions are well established for solution chemistry, it is not a priori clear whether they can easily be transferred to reactions taking place on a metal surface. A metal will fix the chemical potential of the electrons and perturb the electronic states of the reactants because of hybridization. Additionally, techniques to characterize chemical reactions in solution are generally not applicable to on-surface reactions. Only recent developments in resolving chemical structures by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) paved the way for identifying individual reaction products on surfaces. Here we exploit a combined STM/AFM technique to demonstrate the on-surface formation of complex molecular architectures built up from a heteroaromatic precursor, the tetracyclic pyrazino[2,3-f][4,7]phenanthroline (pap) molecule. Selective intermolecular aryl-aryl coupling via dehydrogenative C-H activation occurs on Au(111) upon thermal annealing under ultrahigh vacuum (UHV) conditions. A full atomistic description of the different reaction products based on an unambiguous discrimination between pyrazine and pyridine moieties is presented. Our work not only elucidates that ortho-hydrogen atoms of the pyrazine rings are preferentially activated over their pyridine equivalents, but also sheds new light onto the participation of substrate atoms in metal-organic coordination bonding during covalent C-C bond formation.

11.
Angew Chem Int Ed Engl ; 54(48): 14304-7, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26444184

ABSTRACT

Tuning charge transport at the single-molecule level plays a crucial role in the construction of molecular electronic devices. Introduced herein is a promising and operationally simple approach to tune two distinct charge-transport pathways through a cruciform molecule. Upon in situ cleavage of triisopropylsilyl groups, complete conversion from one junction type to another is achieved with a conductance increase by more than one order of magnitude, and it is consistent with predictions from ab initio transport calculations. Although molecules are well known to conduct through different orbitals (either HOMO or LUMO), the present study represents the first experimental realization of switching between HOMO- and LUMO-dominated transport within the same molecule.

12.
J Am Chem Soc ; 136(25): 8867-70, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24933522

ABSTRACT

We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal-molecule-metal (m-M-m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (-CS2(-)) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.

13.
Chemistry ; 19(20): 6459-66, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23494841

ABSTRACT

Two benzodifuran (BDF)-coupled spiropyran (SP) systems and their BDF reference compounds were obtained in good yields through Huisgen-Meldal-Sharpless "click" chemistry and then subjected to investigation of their electrochemical and photophysical properties. In both SP and merocyanine (MC) forms of the coupled molecules, the BDF-based emission is quenched to around 1 % of the quantum yield of emission from the BDF reference compounds. Based on electrochemical data, this quenching is attributed to oxidative electron-transfer quenching. Irradiation at 366 nm results in ring opening to the MC forms of the BDF-coupled SP compounds and the SP reference compound with a quantum efficiency of about 50 %. The rate constants for the thermal ring closing are approximately 3.4×10(-3)  s(-1). However, in the photostationary states the MC fractions of the coupled molecules are substantially lower than that of the reference SP compound, attributed to the observed acceleration of the ring-closing reaction upon irradiation. As irradiation at 366 nm invariably also excites higher-energy transitions of the BDF units in the coupled compounds, the ring-opening reaction is accelerated relative to the SP reference, which results in lower MC fractions in the photostationary state. Reversible photochromism of these BDF-coupled SP compounds renders them promising in the field of molecular switches.


Subject(s)
Benzofurans/chemistry , Benzopyrans/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indoles/chemical synthesis , Nitro Compounds/chemical synthesis , Spiro Compounds/chemistry , Benzopyrans/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Indoles/chemistry , Molecular Structure , Nitro Compounds/chemistry , Oxidation-Reduction
14.
Neurosci Lett ; 807: 137249, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37061026

ABSTRACT

OBJECTIVE: The quantitative susceptibility mapping (QSM) technique was used to analyze the distribution pattern of iron deposition in the basal ganglia region of patients with motor subtypes of Parkinson's disease (PD) and to explore the difference in iron content in the basal ganglia region of PD motor subtypes on the major motor symptomatic side. METHODS: The study included 76 patients with PD and 37 healthy controls (HC). Patients with PD were divided into two groups: postural instability/gait disorder (PIGD)(n = 48), and tremor dominance (TD)(n = 28). We classified patients with PD according to the side of the major motor symptoms as left PIGD (n = 23), left TD (n = 14), right PIGD (n = 25), and right TD (n = 14). All subjects underwent brain magnetic resonance scanning to obtain QSM and susceptibility values in the corresponding regions of interest (ROI). RESULTS: (1) Compared with the HC, the bilateral SN in the PD-PIGD and TD group showed greater susceptibility values. The susceptibility values in the left CN, bilateral PUT were also greater in the PD-PIGD group than the HC. (2) Compared with the TD, the left PUT susceptibility values were greater in the PIGD group, especially in patients whose major symptomatic side were on the right limb. (3) Correlation analysis showed that in the PD group, bilateral SN was positively correlated with the unified Parkinson's disease rating scale III part scores of the Movement Disorder Society (MDS-UPDRS III) and the Hoehn-Yahr stage. Bilateral dentate nucleus (DN) susceptibility values were significantly positively correlated with TD scores, and left PUT susceptibility values were positively correlated with PIGD scores. The left SN within the PIGD group was positively correlated with the PIGD score. CONCLUSION: There were different iron deposition patterns in the basal ganglia between the PD-PIGD and TD groups. There also seems to be a difference in iron deposition in PD motor subtypes on different major motor symptom sides.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Basal Ganglia/diagnostic imaging , Tremor , Magnetic Resonance Imaging , Iron
15.
Cell Rep ; 42(12): 113466, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039131

ABSTRACT

Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.


Subject(s)
Protein Aggregates , Proteomics , Humans , Mutation/genetics , Mitochondria/metabolism , Neurons/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
16.
Front Cell Infect Microbiol ; 12: 948980, 2022.
Article in English | MEDLINE | ID: mdl-35992167

ABSTRACT

The Zika virus is responsible for neurological diseases such as microcephaly, Guillain-Barré syndrome, neuropathy, and myelitis in human adults and children. Previous studies have shown that the Zika virus can infect nerve progenitor cells and interfere with neural development. However, it is unclear how the immune system responds to infection with Zika viruses with variable pathogenicity. Here, we used two Zika strains with relatively different pathogenicity, the Asian ancestral strain CAM/2010 and the America pandemic strain GZ01/2016, to infect the brains of mice. We found that both strains elicited a strong immune response. Notably, the strain with relatively high pathogenicity, GZ01/2016, caused more intense immune regulation, with stronger CD8+ T cell and macrophage activation at 14 days post infection (dpi), as well as a greater immune gene disturbance. Notably, several TNF family genes were upregulated at 14 dpi, including Tnfrsf9, Tnfsf13, Tnfrsf8, Cd40, and Tnfsf10. It was notable that GZ01/2016 could maintain the survival of nerve cells at 7dpi but caused neurological disorders at 14dpi. These results indicate that Zika viruses with high pathogenicity may induce sustained activation of the immune system leading to nerve tissue damage.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Brain , Child , Humans , Male , Mice , Testis , Virulence
17.
J Biochem ; 171(2): 187-199, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34878535

ABSTRACT

N-Glycanase 1 (NGLY1) deficiency is a rare and complex genetic disorder. Although recent studies have shed light on the molecular underpinnings of NGLY1 deficiency, a systematic characterization of gene and protein expression changes in patient-derived cells has been lacking. Here, we performed RNA-sequencing and mass spectrometry to determine the transcriptomes and proteomes of 66 cell lines representing four different cell types derived from 14 NGLY1 deficient patients and 17 controls. Although NGLY1 protein levels were up to 9.5-fold downregulated in patients compared with parents, residual and likely non-functional NGLY1 protein was detectable in all patient-derived lymphoblastoid cell lines. Consistent with the role of NGLY1 as a regulator of the transcription factor Nrf1, we observed a cell type-independent downregulation of proteasomal genes in NGLY1 deficient cells. In contrast, genes involved in ribosome biogenesis and mRNA processing were upregulated in multiple cell types. In addition, we observed cell type-specific effects. For example, genes and proteins involved in glutathione synthesis, such as the glutamate-cysteine ligase subunits GCLC and GCLM, were downregulated specifically in lymphoblastoid cells. We provide a web application that enables access to all results generated in this study at https://apps.embl.de/ngly1browser. This resource will guide future studies of NGLY1 deficiency in directions that are most relevant to patients.


Subject(s)
Congenital Disorders of Glycosylation , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Gene Expression Regulation , Humans , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Proteasome Endopeptidase Complex/metabolism
18.
Sci Rep ; 12(1): 8033, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577875

ABSTRACT

Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC-MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value.


Subject(s)
Metabolomics , Ultrasonography, Prenatal , Chromatography, Liquid , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy
19.
J Vet Diagn Invest ; 33(2): 288-293, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33543676

ABSTRACT

Fibroblast growth factor 23 (FGF-23) is an independent monitor of the progression of chronic kidney disease (CKD) in human medicine, and FGF-23 may have value as a biomarker in feline CKD. We evaluated the relationship between serum FGF-23 and CKD stages, and the effect of age on FGF-23 in normal cats. We measured FGF-23 and intact parathyroid hormone (iPTH) concentrations by ELISA, with intra- and inter-assay CVs ≤ 15%. The percentage recovery of FGF-23 and iPTH remained stable for up to 7 d in samples stored at -20°C and -80°C. We measured FGF-23 in 304 cats, among which 196 were diagnosed with CKD. The 108 clinically healthy cats were divided into 5 subgroups based on growth stage (0-2 y, 3-6 y, 7-10 y, 11-14 y, ≥ 15 y). No statistical difference was found in FGF-23 among age groups (p = 0.15) or by sex in healthy subjects. Using the International Renal Interest Society guideline, 34 cats were defined as CKD stage 1, 74 stage 2, 51 stage 3, and 37 stage 4. FGF-23 was higher in cats in all CKD stages than in controls. Higher serum phosphorus was observed in stage 3 (p = 0.04) and 4 (p < 0.01) compared to controls. iPTH increased as CKD progressed. Pearson analysis indicated a positive linear relationship between FGF-23 and iPTH (control: r = 0.70, p < 0.01; CKD: r = 0.46, p = 0.02). FGF-23 may be a useful biomarker of feline CKD and may precede hyperphosphatemia in advanced feline CKD.


Subject(s)
Cat Diseases/diagnosis , Fibroblast Growth Factors/blood , Hyperphosphatemia/veterinary , Parathyroid Hormone/blood , Renal Insufficiency, Chronic/veterinary , Animals , Biomarkers/blood , Cat Diseases/blood , Cats , China , Female , Fibroblast Growth Factor-23 , Hyperphosphatemia/blood , Hyperphosphatemia/complications , Hyperphosphatemia/diagnosis , Male , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis
20.
Front Chem ; 9: 721272, 2021.
Article in English | MEDLINE | ID: mdl-34368088

ABSTRACT

A series of bis(triphenylamine)benzodifuran chromophores have been synthesized and fully characterised. Starting from suitably functionalized benzodifuran (BDF) precursors, two triphenylamine (TPA) moieties are symmetrically coupled to a central BDF unit either at 4,8-positions through double bonds (1) and single bonds (2) respectively, or at 2,6-positions through double bonds (3). Their electronic absorption and photoluminescence properties as well as redox behaviour have been investigated in detail, indicating that the π-extended conjugation via vinyl linkers in 1 and 3 leads to comparatively strong electronic interactions between the relevant redox moieties TPA and BDF. Due to intriguing electronic properties and structural planarity, 3a has been applied as a dopant emitter in organic light-emitting diodes. A yellowish-green OLED exhibits a high external quantum efficiency (EQE) of 6.2%, thus exceeding the theoretical upper limit most likely due to energy transfer from an interface exciplex to an emissive layer and/or favorable horizontal orientation.

SELECTION OF CITATIONS
SEARCH DETAIL