Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 84(4): 776-790.e5, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38211588

ABSTRACT

TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinogenesis/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Doublecortin-Like Kinases , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
Nat Mater ; 23(4): 470-478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418924

ABSTRACT

Two-dimensional materials have emerged as an important research frontier for overcoming the challenges in nanoelectronics and for exploring new physics. Among them, black phosphorus, with a combination of a tunable bandgap and high mobility, is one of the most promising systems. In particular, black phosphorus nanoribbons show excellent electrostatic gate control, which can mitigate short-channel effects in nanoscale transistors. Controlled synthesis of black phosphorus nanoribbons, however, has remained an outstanding problem. Here we report large-area growth of black phosphorus nanoribbons directly on insulating substrates. We seed the chemical vapour transport growth with black phosphorus nanoparticles and obtain uniform, single-crystal nanoribbons oriented exclusively along the [100] crystal direction. With comprehensive structural calculations, we discover that self-passivation at the zigzag edges holds the key to the preferential one-dimensional growth. Field-effect transistors based on individual nanoribbons exhibit on/off ratios up to ~104, confirming the good semiconducting behaviour of the nanoribbons. These results demonstrate the potential of black phosphorus nanoribbons for nanoelectronic devices and also provide a platform for investigating the exotic physics in black phosphorus.

3.
J Am Chem Soc ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597345

ABSTRACT

Deubiquitinase-targeting chimeras (DUBTACs) have been recently developed to stabilize proteins of interest, which is in contrast to targeted protein degradation (TPD) approaches that degrade disease-causing proteins. However, to date, only the OTUB1 deubiquitinase has been utilized to develop DUBTACs via an OTUB1 covalent ligand, which could unexpectedly compromise the endogenous function of OTUB1 owing to its covalent nature. Here, we show for the first time that deubiquitinase USP7 can be harnessed for DUBTAC development. Based on a noncovalent ligand of USP7, we developed USP7-based DUBTACs that stabilized the ΔF508-CFTR mutant protein as effectively as the previously reported OTUB1-based DUBTAC. Importantly, using two different noncovalent ligands of USP7, we developed the first AMPK DUBTACs that appear to selectively stabilize different isoforms of AMPKß, leading to elevated AMPK signaling. Overall, these results highlight that, in addition to OTUB1, USP7 can be leveraged to develop DUBTACs, thus significantly expanding the limited toolbox for targeted protein stabilization and the development of novel AMPK DUBTACs as potential therapeutics.

4.
J Am Chem Soc ; 146(11): 7584-7593, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38469801

ABSTRACT

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Subject(s)
DNA, Z-Form , Proteolysis Targeting Chimera , Proteolysis , Adenosine Deaminase/metabolism , RNA/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/metabolism
5.
Cancer ; 130(11): 1940-1951, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38288862

ABSTRACT

BACKGROUND: This phase 1b study (ClinicalTrials.gov identifier NCT03695380) evaluated regimens combining PARP and MEK inhibition, with or without PD-L1 inhibition, for BRCA wild-type, platinum-sensitive, recurrent ovarian cancer (PSROC). METHODS: Patients with PSROC who had received one or two prior treatment lines were treated with 28-day cycles of cobimetinib 60 mg daily (days 1-21) plus niraparib 200 mg daily (days 1-28) with or without atezolizumab 840 mg (days 1 and 15). Stage 1 assessed safety before expansion to stage 2, which randomized patients who had BRCA wild-type PSROC to receive either doublet or triplet therapy, stratified by genome-wide loss of heterozygosity status (<16% vs. ≥16%; FoundationOne CDx assay) and platinum-free interval (≥6 to <12 vs. ≥12 months). Coprimary end points were safety and the investigator-determined objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors (RECIST). Potential associations between genetic parameters and efficacy were explored, and biomarker profiles of super-responders (complete response or those with progression-free survival [PFS] >15 months) and progressors (disease progression as the best response) were characterized. RESULTS: The ORR in patients who had BRCA wild-type PSROC was 35% (95% confidence interval, 20%-53%) with the doublet regimen (n = 37) and 27% (95% confidence interval, 14%-44%) with the triplet regimen (n = 37), and the median PFS was 6.0 and 7.4 months, respectively. Post-hoc analyses indicated more favorable ORR and PFS in the homologous recombination-deficiency-signature (HRDsig)-positive subgroup than in the HRDsig-negative subgroup. Tolerability was consistent with the known profiles of individual agents. NF1 and MKNK1 mutations were associated with sustained benefit from the doublet and triplet regimens, respectively. CONCLUSIONS: Chemotherapy-free doublet and triplet therapy demonstrated encouraging activity, including among patients who had BRCA wild-type, HRDsig-positive or HRDsig-negative PSROC harboring NF1 or MKNK1 mutations.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Neoplasm Recurrence, Local , Ovarian Neoplasms , Phthalazines , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Aged , Adult , Piperidines/therapeutic use , Piperidines/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Phthalazines/therapeutic use , Phthalazines/administration & dosage , Indazoles/therapeutic use , Indazoles/administration & dosage , BRCA1 Protein/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Aged, 80 and over , Platinum/therapeutic use , Platinum/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , BRCA2 Protein/genetics , Progression-Free Survival , Azetidines
6.
Small ; : e2401256, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752227

ABSTRACT

Nickel oxide (NiOx) is a promising hole transport layer (HTL) to fabricate efficient and large-scale inverted perovskite solar cells (PSCs) due to its low cost and superior chemical stability. However, inverted PSCs based on NiOx are still lagging behind that of other HTL because of the poor quality of buried interface contact. Herein, a bidentate ligand, 4,6-bis (diphenylphosphino) phenoxazine (2DPP), is used to regulate the NiOx surface and perovskite buried interface. The diphosphine Lewis base in the 2DPP molecule can coordinate both with NiOx and lead ions at NiOx/perovskite interface, leading to high-quality perovskite films with minimized defects. It is found that the inverted PSCs with 2DPP-modified buried interface exhibit double advantages of being both fast charge extraction and reduced nonradiative recombination, which is a combination of multiple factors including favorable energetic alignment, improved interface contact and strong binding between NiOx/2DPP and perovskite. The optimal PSC based on 2DPP modification yields a champion power conversion efficiency (PCE) of 21.9%. The unencapsulated PSC maintains above 75% of its initial PCE in the air with a relative humidity (RH) of 30-40% for 1000 h.

7.
Small ; : e2403035, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030885

ABSTRACT

Organic single crystals possess distinct advantages due to their highly ordered molecular structures, resulting in improved stability, enhanced carrier mobility, and superior optical characteristics. However, their mechanical rigidity and brittleness impede the applications in flexible and wearable optoelectronic devices. Here, photoluminescence (PL) emission from 2,6-diphenylanthracene (DPA) single crystals is studied under tensile strain, which shows PL enhancement by more than two times with a strain of ≈1.42%. Such a tension induced PL enhancement is reversible, exhibiting no clear optical degradations during 100 cycles of bending and recovery processes. Theoretical calculations reveal that the deformation of molecular structure under strain induces a decrease of the dihedral between anthracene and benzene moieties in DPA molecules. Further, the increased molecular conjugation enhances the molecular oscillator strength, leading to the brightened PL emission. Meanwhile, with the decreased dihedral, the molecular vibrations in DPA crystals are suppressed, which can reduce the non-radiative decay rate. In contrast, no tension induced PL enhancement is observed in polycrystalline DPA thin films as the strain can be released via the grain boundaries. This study highlights the superior optical performance of DPA single crystals under strain field, which will provide new possibilities for DPA-based flexible devices.

8.
Small ; 20(31): e2311750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38459645

ABSTRACT

The commercialization of lithium-sulfur (Li-S) battery is seriously hindered by the shuttle behavior of lithium (Li) polysulfide, slow conversion kinetics, and Li dendrite growth. Herein, a novel hierarchical p-type iron nitride and n-type vanadium nitride (p-Fe2N/n-VN) heterostructure with optimal electronic structure, confined in vesicle-like N-doped nanofibers (p-Fe2N/n-VN⊂PNCF), is meticulously constructed to work as "one stone two birds" dual-functional hosts for both the sulfur cathode and Li anode. As demonstrated, the d-band center of high-spin Fe atom captures more electrons from V atom to realize more π* and moderate σ* bond electron filling and orbital occupation; thus, allowing moderate adsorption intensity for polysulfides and more effective d-p orbital hybridization to improve reaction kinetics. Meanwhile, this unique structure can dynamically balance the deposition and transport of Li on the anode; thereby, more effectively inhibiting Li dendrite growth and promoting the formation of a uniform solid electrolyte interface. The as-assembled Li-S full batteries exhibit the conspicuous capacities and ultralong cycling lifespan over 2000 cycles at 5.0 C. Even at a higher S loading (20 mg cm-2) and lean electrolyte (2.5 µL mg-1), the full cells can still achieve an ultrahigh areal capacity of 16.1 mAh cm-2 after 500 cycles at 0.1 C.

9.
Phys Rev Lett ; 132(6): 066101, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394575

ABSTRACT

Superelastic alloys used for stents, biomedical implants, and solid-state cooling devices rely on their reversible stress-induced martensitic transformations. These applications require the alloy to sustain high deformability over millions of cycles without failure. Here, we report an alloy capable of enduring 10×10^{7} tensile stress-induced phase transformations while still exhibiting over 2% recoverable elastic strains. After millions of cycles, the alloy is highly reversible with zero stress hysteresis. We show that the major martensite variant is reversible even after multimillions of cycles under tensile loadings with a highly coherent (11[over ¯]0)_{A} interface. This discovery provides new insights into martensitic transformation, and may guide the development of superelastic alloys for multimillion cycling applications.

10.
Langmuir ; 40(14): 7692-7700, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38546150

ABSTRACT

Porous thermosensitive hydrogels exhibit a more flexible strategy for freshwater capture compared to conventional hydrogels. This study employs molecular dynamics (MD) simulation to investigate the deswelling behavior of poly(N-isopropylacrylamide) (PNIPAM) grafted within the nanochannel, aiming to elucidate the deswelling elimination process at various temperatures. Notably, a distinct phase separation is observed at specific temperatures above the lower solution temperature (LCST). Furthermore, this study takes the effect of heat flux into account, wherein distinct heat fluxes lead to varying levels of phase separation between water and the polymer. Specifically, the number of hydrogen bonds, volume of polymer chains, and density distribution of water molecules are statistically analyzed to reveal the mechanism of phase separation in a thermosensitive hydrogel. These findings provide insight into the accelerated deswelling kinetics of the PNIPAM polymer chain, which has guiding significance for the field of water harvesting by the enhancement of the water release capacity in thermosensitive hydrogels.

11.
Pediatr Res ; 96(1): 115-123, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582946

ABSTRACT

BACKGROUND: Growth hormone deficiency(GHD) and idiopathic short stature(ISS) are the primary causes of short stature in children. Animal experiments have revealed a link between growth hormone(GH), gut microbiota and metabolism, however, limited information is available from human trials. METHODS: Fecal samples collected from GHD (n = 36), ISS (n = 32) and healthy control (HC) children(n = 16) were subjected to microbiome (16 S rRNA gene sequencing) and metabolome (nuclear magnetic resonance,NMR) analyses. RESULTS: GHD, ISS and HC exhibit distinct differences in beta diversity of gut microbiota.In addition, short stature (GHD and ISS) exhibit higher relative abundance of Prevotellaceae_NK3B31_group at genus level compared to HC, whereas Rodentibacter, Rothia, and Pelomonas showed lower abundance. Additionally,Fusobacterium_mortiferum was identified as the characteristic species of GHD. Moreover, glucose metabolism, pyruvate metabolism and pyrimidine metabolism might play significant roles for distinguishing between GHD and normal GH groups (ISS and HC). Furthermore, a disease prediction model based on differential bacteria and metabolites between GHD and ISS exhibited high diagnostic value. CONCLUSION: These findings highlight the characteristics of different GH levels on the gut microbiota and metabolism in children, providing novel perspectives for early diagnosis and prognostic treatment of short stature with abnormal GH levels. IMPACT: The key message of our study is to identify human-relevant gut microbiota and host metabolic patterns that are interfered with growth hormone levels, and to develop biomarker models to identify short stature associated with growth hormone deficiency. We used idiopathic short stature as a control group for growth hormone deficiency, complementing the absence of height as a factor in the existing literature. Our study ultimately hopes to shed new light on the diagnosis and treatment of short stature children associated with growth hormone deficiency.


Subject(s)
Feces , Gastrointestinal Microbiome , Growth Disorders , Human Growth Hormone , Humans , Child , Male , Female , Feces/microbiology , Human Growth Hormone/metabolism , Growth Disorders/microbiology , Case-Control Studies , Metabolome , Body Height , RNA, Ribosomal, 16S/genetics , Dwarfism, Pituitary/metabolism , Dwarfism, Pituitary/drug therapy , Growth Hormone/metabolism , Growth Hormone/blood , Bacteria/metabolism
12.
Inorg Chem ; 63(32): 15224-15235, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39067007

ABSTRACT

Sodium-ion batteries (SIBs) have great advantages for energy storage and conversion due to their low cost and large storage capacity. Currently, NaRhO2 is used as an electrode material for sodium-ion batteries. Doping first- and second-row transition metals has been carried out to comprehensively assess NaRhO2 as a cathode material. The geometric and electronic structures and electrochemical and doping behaviors of NaRhO2 cathode materials for SIBs have been investigated using density functional theory calculations. The results show that the bond lengths of Rh-O in NaRhO2 decrease during sodium deintercalation. The band gap of NaRhO2 with sodium extraction gradually reduces. The density of states of NaxRhO2 shows that the interaction between the Rh-4d and O-2p orbitals increases and the orbitals shift toward the right. The average intercalation voltage of NaxRhO2 cathode material increased from 2.7 to 3.9 eV. After doping with first- and second-row transition metal elements from Sc to Zn and Y to Cd, the changes in the band gaps of the doped NaRhO2 materials exhibit a W-type rule. In contrast, their magnetic moments show a reverse W-type rule. These findings on the pristine and doped NaRhO2 can provide theoretical guidance for the preparation of novel electrode materials suitable for sodium-ion batteries.

13.
BMC Public Health ; 24(1): 1813, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978043

ABSTRACT

DATA SOURCES: The Global Burden of Diseases, Injuries, and Risk Factors study (GBD) 2019. BACKGROUND: To describe burden, and to explore cross-country inequalities according to socio-demographic index (SDI) for stroke and subtypes attributable to diet. METHODS: Death and years lived with disability (YLDs) data and corresponding estimated annual percentage changes (EAPCs) were estimated by year, age, gender, location and SDI. Pearson correlation analysis was performed to evaluate the connections between age-standardized rates (ASRs) of death, YLDs, their EAPCs and SDI. We used ARIMA model to predict the trend. Slope index of inequality (SII) and relative concentration index (RCI) were utilized to quantify the distributive inequalities in the burden of stroke. RESULTS: A total of 1.74 million deaths (56.17% male) and 5.52 million YLDs (55.27% female) attributable to diet were included in the analysis in 2019.Between 1990 and 2019, the number of global stroke deaths and YLDs related to poor diet increased by 25.96% and 74.76% while ASRs for death and YLDs decreased by 42.29% and 11.34% respectively. The disease burden generally increased with age. The trends varied among stroke subtypes, with ischemic stroke (IS) being the primary cause of YLDs and intracerebral hemorrhage (ICH) being the leading cause of death. Mortality is inversely proportional to SDI (R = -0.45, p < 0.001). In terms of YLDs, countries with different SDIs exhibited no significant difference (p = 0.15), but the SII changed from 38.35 in 1990 to 45.18 in 2019 and the RCI showed 18.27 in 1990 and 24.98 in 2019 for stroke. The highest ASRs for death and YLDs appeared in Mongolia and Vanuatu while the lowest of them appeared in Israel and Belize, respectively. High sodium diets, high red meat consumption, and low fruit diets were the top three contributors to stroke YLDs in 2019. DISCUSSION: The burden of diet-related stroke and subtypes varied significantly concerning year, age, gender, location and SDI. Countries with higher SDIs exhibited a disproportionately greater burden of stroke and its subtypes in terms of YLDs, and these disparities were found to intensify over time. To reduce disease burden, it is critical to enforce improved dietary practices, with a special emphasis on mortality drop in lower SDI countries and incidence decline in higher SDI countries.


Subject(s)
Diet , Global Burden of Disease , Global Health , Health Status Disparities , Stroke , Humans , Male , Female , Stroke/mortality , Stroke/epidemiology , Middle Aged , Aged , Diet/statistics & numerical data , Adult , Global Health/statistics & numerical data , Socioeconomic Factors , Aged, 80 and over , Young Adult , Adolescent , Risk Factors
14.
Ecotoxicol Environ Saf ; 277: 116401, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677069

ABSTRACT

Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.


Subject(s)
Cognitive Dysfunction , Cyclic Nucleotide Phosphodiesterases, Type 4 , MicroRNAs , Neuronal Plasticity , Protein Serine-Threonine Kinases , Animals , MicroRNAs/genetics , Mice , Cognitive Dysfunction/chemically induced , Neuronal Plasticity/drug effects , Male , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cyclic AMP/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Air Pollutants/toxicity , Particulate Matter/toxicity
15.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000935

ABSTRACT

The two-phase seepage fluid (i.e., air and water) behaviors in undisturbed granite residual soil (U-GRS) have not been comprehensively studied due to a lack of accurate and representative models of its internal pore structure. By leveraging X-ray computed tomography (CT) along with the lattice Boltzmann method (LBM) enhanced by the Shan-Chen model, this study simulates the impact of internal pore characteristics of U-GRS on the water-gas two-phase seepage flow behaviors. Our findings reveal that the fluid demonstrates a preference for larger and straighter channels for seepage, and as seepage progresses, the volume fraction of the water/gas phases exhibits an initial increase/decrease trend, eventually stabilizing. The results show the dependence of two-phase seepage velocity on porosity, while the local seepage velocity is influenced by the distribution and complexity of the pore structure. This emphasizes the need to consider pore distribution and connectivity when studying two-phase flow in undisturbed soil. It is observed that the residual gas phase persists within the pore space, primarily localized at the pore margins and dead spaces. Furthermore, the study identifies that hydrophobic walls repel adjacent fluids, thereby accelerating fluid movement, whereas hydrophilic walls attract fluids, inducing a viscous effect that decelerates fluid flow. Consequently, the two-phase flow rate is found to increase with then-enhanced hydrophobicity. The apex of the water-phase volume fraction is observed under hydrophobic wall conditions, reaching up to 96.40%, with the residual gas-phase constituting 3.60%. The hydrophilic wall retains more residual gas-phase volume fraction than the neutral wall, followed by the hydrophobic wall. Conclusively, the investigations using X-ray CT and LBM demonstrate that the pore structure characteristics and the wettability of the pore walls significantly influence the two-phase seepage process.

16.
Yi Chuan ; 46(2): 92-108, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38340001

ABSTRACT

Fluorescent RNA is a kind of emerging RNA labeling technique that can be used for in situ labeling and imaging of RNA in live cells, which plays an important role in understanding the function and regulation mechanism of RNA. Biosensing technology based on fluorescent RNA can be applied in dynamic detection of small molecule metabolites and proteins in real time, offering valuable tools for basic life science research and biomedical sensing technology development. In this review, we introduce the development of genetically encoded fluorescent RNA, and the application of fluorescent RNA in RNA imaging and biosensing technology based on fluorescent RNA in biosensing in live cell. Meanwhile, we discuss the direction and challenge of future development of fluorescent RNA technology to provide valuable insights for further development and application of this technology in relevant fields.


Subject(s)
Biosensing Techniques , RNA , Biosensing Techniques/methods , Proteins , Fluorescent Dyes
17.
Angew Chem Int Ed Engl ; 63(20): e202402726, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38494458

ABSTRACT

Organic photothermal materials have attracted increasing attention because of their structural diversity, flexibility, and compatibility. However, their energy conversion efficiency is limited owing to the narrow absorption spectrum, strong reflection/transmittance, and insufficient nonradiative decay. In this study, two quinoxaline-based D-A-D-A-D-type molecules with ethyl (BQE) or carboxylate (BQC) substituents were synthesized. Strong intramolecular charge transfer provided both molecules with a broad absorption range of 350-1000 nm. In addition, the high reorganization energy and weak molecular packing of BQE resulted in efficient nonradiative decay. More importantly, the self-assembly of BQE leads to a textured surface and enhances the light-trapping efficiency with significantly reduced light reflection/transmittance. Consequently, BQE achieved an impressive solar-thermal conversion efficiency of 18.16 % under 1.0 kW m-2 irradiation with good photobleaching resistance. Based on this knowledge, the water evaporation rate of 1.2 kg m-2 h-1 was attained for the BQE-based interfacial evaporation device with an efficiency of 83 % under 1.0 kW m-2 simulated sunlight. Finally, the synergetic integration of solar-steam and thermoelectric co-generation devices based on BQE was realized without significantly sacrificing solar-steam efficiency. This underscores the practical applications of BQE-based technology in effectively harnessing photothermal energy. This study provides new insights into the molecular design for enhancing light-trapping management by molecular self-assembly, paving the way for photothermal-driven applications of organic photothermal materials.

18.
Angew Chem Int Ed Engl ; : e202411512, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988004

ABSTRACT

Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which is served as driving force of exciton splitting. Differently, our current work focuses on modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent is utilized in treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates the tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Importantly, the resulted shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes the exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8% (small-area) with a superior operational reliability (T80: 586 hours) and 17.0% (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of OSC field.

19.
Angew Chem Int Ed Engl ; : e202411730, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044319

ABSTRACT

We report a highly crystalline self-assembled multilayer (SAMUL) that is fundamentally different from the conventional monolayer or disordered bilayer used for hole-extraction in inverted perovskite solar cells (PSCs). The SAMUL can be easily formed on ITO substrate to form better surface coverage for enhancing the performance and stability of PSCs. A detailed structure-property-performance relationship of molecules used for SAMUL is established through a systematic study of their crystallinity, molecular packing, and hole-transporting properties. These SAMULs are rationally optimized by varying their molecular structures and deposition through thermal evaporation or spin-coating for fabricating PSCs. The CbzNaphPPA-based SAMUL was chosen for fabricating inverted PSCs due to its highest crystallinity and hole mobility derived from the ordered H-aggregation, which resulted in a remarkably high fill factor of 86.45%. This enables a very impressive power conversion efficiency (PCE) of 26.07% to be achieved along with excellent device stability (94% of its initial PCE retained after continuous operation for 1200 h under 1-sun irradiation at maximum power point at 65°C). Additionally, a record-high PCE of 23.50% could be achieved by adopting a thermally evaporated SAMUL. This greatly simplifies and broadens the scope for SAM to be used for large-area devices on diverse substrates.

20.
Bioengineering (Basel) ; 11(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39061784

ABSTRACT

In hydrated soft biological tissues experiencing edema, which is typically associated with various disorders, excessive fluid accumulates and is encapsulated by impermeable membranes. In certain cases of edema, an indentation induced by pressure persists even after the load is removed. The depth and duration of this indentation are used to assess the treatment response. This study presents a mixture theory-based approach to analyzing the edematous condition. The finite element analysis formulation was grounded in mixture theory, with the solid displacement, pore water pressure, and fluid relative velocity as the unknown variables. To ensure tangential fluid flow at the surface of tissues with complex shapes, we transformed the coordinates of the fluid velocity vector at each time step and node, allowing for the incorporation of the transmembrane component of fluid flow as a Dirichlet boundary condition. Using this proposed method, we successfully replicated the distinct behavior of pitting edema, which is characterized by a prolonged recovery time from indentation. Consequently, the proposed method offers valuable insights into the finite element analysis of the edematous condition in biological tissues.

SELECTION OF CITATIONS
SEARCH DETAIL