Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 578(7793): E10, 2020 02.
Article in English | MEDLINE | ID: mdl-31937918

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 575(7781): 164-168, 2019 11.
Article in English | MEDLINE | ID: mdl-31695212

ABSTRACT

Shape-morphing systems, which can perform complex tasks through morphological transformations, are of great interest for future applications in minimally invasive medicine1,2, soft robotics3-6, active metamaterials7 and smart surfaces8. With current fabrication methods, shape-morphing configurations have been embedded into structural design by, for example, spatial distribution of heterogeneous materials9-14, which cannot be altered once fabricated. The systems are therefore restricted to a single type of transformation that is predetermined by their geometry. Here we develop a strategy to encode multiple shape-morphing instructions into a micromachine by programming the magnetic configurations of arrays of single-domain nanomagnets on connected panels. This programming is achieved by applying a specific sequence of magnetic fields to nanomagnets with suitably tailored switching fields, and results in specific shape transformations of the customized micromachines under an applied magnetic field. Using this concept, we have built an assembly of modular units that can be programmed to morph into letters of the alphabet, and we have constructed a microscale 'bird' capable of complex behaviours, including 'flapping', 'hovering', 'turning' and 'side-slipping'. This establishes a route for the creation of future intelligent microsystems that are reconfigurable and reprogrammable in situ, and that can therefore adapt to complex situations.

3.
Small ; 20(20): e2307621, 2024 May.
Article in English | MEDLINE | ID: mdl-38111987

ABSTRACT

Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.

4.
Small ; 18(33): e2203821, 2022 08.
Article in English | MEDLINE | ID: mdl-35867042

ABSTRACT

2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.


Subject(s)
Molybdenum , Nanostructures , Disulfides , Infrared Rays , Phototherapy/methods
5.
Chem Rev ; 120(20): 11175-11193, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33054168

ABSTRACT

During the last two decades, engineering motion with small-scale matter has received much attention in several areas of research, ranging from supramolecular chemistry and colloidal science to robotics and automation. The numerous discoveries and innovative concepts realized in motile micro- and nanostructures have converged in the field of small-scale swimmers. These man-made micro- and nanomachines can move in fluids by transforming different forms of energy to mechanical motion. Recently, metal-organic frameworks (MOFs), which are crystalline coordination polymers with high porosity, have been proposed as key building blocks in several small-scale swimmer designs. These materials possess the required features for motile micro- and nanodevices, such as high cargo-loading capacity, biodegradability, biocompatibility, and stimuli-responsiveness. In this review, we take a journey through the major breakthroughs and milestones realized in the area of MOF-based small-scale swimmers. First, a brief introduction to the field of small-scale swimmers is provided. Next, we review different strategies that have been reported for imparting motion to MOFs. Finally, we emphasize the incorporation of molecular machines into the MOF's architecture as the means to create highly integrated small-scale swimmers. The strategies and developments explored in this review pave the way toward the use of motile MOFs for a variety of applications in the fields of biomedicine, environmental remediation, and on-the-fly chemistry.

6.
Angew Chem Int Ed Engl ; 58(38): 13550-13555, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31309662

ABSTRACT

Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components. The ferrimagnetism of the composite originates from binary oxides of iron and transition metals such as cobalt. This approach exhibits similarities to the natural mineralization of iron oxide species, as is observed in ores and in biomineralization.

7.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594254

ABSTRACT

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

8.
Adv Mater ; 36(18): e2310084, 2024 May.
Article in English | MEDLINE | ID: mdl-38101447

ABSTRACT

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.

9.
Adv Mater ; : e2402309, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780003

ABSTRACT

Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.

10.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146105

ABSTRACT

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

11.
Nat Commun ; 14(1): 750, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765045

ABSTRACT

The shape recovery ability of shape-memory alloys vanishes below a critical size (~50 nm), which prevents their practical applications at the nanoscale. In contrast, ferroic materials, even when scaled down to dimensions of a few nanometers, exhibit actuation strain through domain switching, though the generated strain is modest (~1%). Here, we develop freestanding twisted architectures of nanoscale ferroic oxides showing shape-memory effect with a giant recoverable strain (>8%). The twisted geometrical design amplifies the strain generated during ferroelectric domain switching, which cannot be achieved in bulk ceramics or substrate-bonded thin films. The twisted ferroic nanocomposites allow us to overcome the size limitations in traditional shape-memory alloys and open new avenues in engineering large-stroke shape-memory materials for small-scale actuating devices such as nanorobots and artificial muscle fibrils.

12.
Mater Horiz ; 10(7): 2627-2637, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37185815

ABSTRACT

Magnetoelectricity enables a solid-state material to generate electricity under magnetic fields. Most magnetoelectric composites are developed through a strain-mediated route by coupling piezoelectric and magnetostrictive phases. However, the limited availability of high-performance magnetostrictive components has become a constraint for the development of novel magnetoelectric materials. Here, we demonstrate that nanostructured composites of magnetic and pyroelectric materials can generate electrical output, a phenomenon we refer to as the magnetopyroelectric (MPE) effect, which is analogous to the magnetoelectric effect in strain-mediated composite multiferroics. Our composite consists of magnetic iron oxide nanoparticles (IONPs) dispersed in a ferroelectric (and also pyroelectric) poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. Under a high-frequency low-magnitude alternating magnetic field, the IONPs generate heat through hysteresis loss, which stimulates the depolarization process of the pyroelectric polymer. This magnetopyroelectric approach creates a new opportunity to develop magnetoelectric materials for a wide range of applications.

13.
ACS Nano ; 17(11): 10637-10650, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37213184

ABSTRACT

The anti-PD-L1 immunotherapy has shown promise in treating cancer. However, certain patients with metastatic cancer have low response and high relapse rates. A main reason is systemic immunosuppression caused by exosomal PD-L1, which can circulate in the body and inhibit T cell functions. Here, we show that Golgi apparatus-Pd-l1-/- exosome hybrid membrane coated nanoparticles (GENPs) can significantly reduce the secretion of PD-L1. The GENPs can accumulate in tumors through homotypic targeting and effectively deliver retinoic acid, inducing disorganization of the Golgi apparatus and a sequence of intracellular events including alteration of endoplasmic reticulum (ER)-to-Golgi trafficking and subsequent ER stress, which finally disrupts the PD-L1 production and the release of exosomes. Furthermore, GENPs could mimic exosomes to access draining lymph nodes. The membrane antigen of PD-l1-/- exosome on GENPs can activate T cells through a vaccine-like effect, strongly promoting systemic immune responses. By combining GENPs with anti-PD-L1 treatment in the sprayable in situ hydrogel, we have successfully realized a low recurrence rate and substantially extended survival periods in mice models with incomplete metastatic melanoma resection.


Subject(s)
Exosomes , Melanoma , Animals , Mice , Melanoma/drug therapy , Melanoma/metabolism , Immunotherapy , T-Lymphocytes , Immunosuppression Therapy , Golgi Apparatus , Exosomes/metabolism
14.
Adv Sci (Weinh) ; 9(1): e2103277, 2022 01.
Article in English | MEDLINE | ID: mdl-34723442

ABSTRACT

Variable stiffness catheters are typically composed of an encapsulated core. The core is usually composed of a low melting point alloy (LMPA) or a thermoplastic polymer (TP). In both cases, there is a need to encapsulate the core with an elastic material. This imposes a limit to the volume of variable stiffness (VS) material and limits miniaturization. This paper proposes a new approach that relies on the use of thermosetting materials. The variable stiffness catheter (VSC) proposed in this work eliminates the necessity for an encapsulation layer and is made of a unique biocompatible thermoset polymer with an embedded heating system. This significantly reduces the final diameter, improves manufacturability, and increases safety in the event of complications. The device can be scaled to sub-millimeter dimensions, while maintaining a high stiffness change. In addition, integration into a magnetic actuation system allows for precise actuation of one or multiple tools.


Subject(s)
Catheters , Equipment Design/methods , Robotics/methods , Smart Materials/chemistry , Humans
15.
Adv Mater ; 34(19): e2110612, 2022 May.
Article in English | MEDLINE | ID: mdl-35276030

ABSTRACT

Magnetic fields have been regarded as an additional stimulus for electro- and photocatalytic reactions, but not as a direct trigger for catalytic processes. Multiferroic/magnetoelectric materials, whose electrical polarization and surface charges can be magnetically altered, are especially suitable for triggering and control of catalytic reactions solely with magnetic fields. Here, it is demonstrated that magnetic fields can be employed as an independent input energy source for hydrogen harvesting by means of the magnetoelectric effect. Composite multiferroic CoFe2 O4 -BiFeO3 core-shell nanoparticles act as catalysts for the hydrogen evolution reaction (HER), which is triggered when an alternating magnetic field is applied to an aqueous dispersion of the magnetoelectric nanocatalysts. Based on density functional calculations, it is proposed that the hydrogen evolution is driven by changes in the ferroelectric polarization direction of BiFeO3 caused by the magnetoelectric coupling. It is believed that the findings will open new avenues toward magnetically induced renewable energy harvesting.

16.
Mater Horiz ; 9(12): 3031-3038, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36129054

ABSTRACT

Cell therapy refers to a treatment that involves the delivery of cells or cellular material by means of injection, grafting, or implantation in order to replace damaged tissue and restore its function, or to aid the body in fighting disease. However, limitations include poor targeting delivery and low therapeutic efficacy due to low cell survival. Hence, novel approaches are required to increase cell delivery efficiency and enhance therapeutic efficacy via selective cell differentiation at target areas. Here, we present a stamping magnetoelectric microscale biorobot (SMMB) consisting of neuron-like cell spheroids loaded with magnetoelectric nanoparticles. The SMMB enables not only effective targeted delivery of cells to multiple target areas (via minimally invasive stamping employing magnetic actuation) but also facilitates selective neuronal differentiation via magnetoelectric (ME) stimulation. This ensures rapid colonization and enhances efficacy. SMMBs were fabricated using SH-SY5Y cells. Magnetoelectric nanoparticles for ME stimulation responded to an alternating magnetic field that ensured targeted cell differentiation. Multi-target cell therapy facilitated the targeted delivery and selective differentiation of SH-SY5Y cells to multiple regions using a single SMMB with rotating and alternating magnetic fields for delivery and ME stimulation. This promising tool may overcome the limitations of existing cell therapy for neurodegenerative diseases.


Subject(s)
Neuroblastoma , Humans , Cell Differentiation , Neurons , Magnetic Fields , Cell- and Tissue-Based Therapy
17.
Macromol Rapid Commun ; 32(1): 94-9, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21432976

ABSTRACT

Greatly enhanced energy density in poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)] is realized through interface effects induced by a photo cross-linking method. Being different from nanocomposites with lowered dielectric strength, the cross-linked P(VDF-CTFE)s possess a high breakdown field as well as remarkably elevated polarization, both of which contribute to the enhanced energy density as high as 22.5 J · cm(-3). Moreover, patterned thin films with various shapes and sizes are fabricated by photolithography, which sheds new light on the integration of PVDF-based electroactive polymers into organic microelectronic devices such as flexible pyroelectric/piezoelectric sensor arrays or non-volatile ferroelectric memory devices.


Subject(s)
Chlorofluorocarbons/chemistry , Cross-Linking Reagents/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Calorimetry, Differential Scanning , Energy Transfer , Photochemical Processes , Temperature , Thermodynamics
18.
Curr Robot Rep ; 2(4): 427-440, 2021.
Article in English | MEDLINE | ID: mdl-35036926

ABSTRACT

PURPOSE OF REVIEW: The increasing number of contributions in the field of small-scale robotics is significantly associated with the progress in material science and process engineering during the last half century. With the objective of integrating the most optimal materials for the propulsion of these motile micro- and nanosystems, several manufacturing strategies have been adopted or specifically developed. This brief review covers some recent advances in materials and fabrication of small-scale robots with a focus on the materials serving as components for their motion and actuation. RECENT FINDINGS: Integration of a wealth of materials is now possible in several micro- and nanorobotic designs owing to the advances in micro- and nanofabrication and chemical synthesis. Regarding light-driven swimmers, novel photocatalytic materials and deformable liquid crystal elastomers have been recently reported. Acoustic swimmers are also gaining attention, with several prominent examples of acoustic bubble-based 3D swimmers being recently reported. Magnetic micro- and nanorobots are increasingly investigated for their prospective use in biomedical applications. The adoption of different materials and novel fabrication strategies based on 3D printing, template-assisted electrodeposition, or electrospinning is briefly discussed. SUMMARY: A brief review on fabrication and powering of small-scale robotics is presented. First, a concise introduction to the world of small-scale robotics and their propulsion by means of magnetic fields, ultrasound, and light is provided. Recent examples of materials and fabrication methodologies for the realization of these devices follow thereafter.

19.
Adv Mater ; 33(42): e2102049, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34480388

ABSTRACT

Most forms of biomatter are ephemeral, which means they transform or deteriorate after a certain time. From this perspective, implantable healthcare devices designed for temporary treatments should exhibit the ability to degrade and either blend in with healthy tissues, or be cleared from the body with minimal disruption after accomplishing their designated tasks. This topic is currently being investigated in the field of biomedical micro- and nanoswimmers. These tiny devices have the ability to move through fluids by converting physical or chemical energy into motion. Several architectures of these devices have been designed to mimic the motion strategies of nature's motile microorganisms and cells. Due to their motion abilities, these devices have been proposed as minimally invasive tools for precision healthcare applications. Hence, a natural progression in this field is to produce motile structures that can adopt, or even surpass, similar transient features as biological systems. The fate of small-scale swimmers after accomplishing their therapeutic mission is critical for the successful translation of small-scale swimmers' technologies into clinical applications. In this review, recent research efforts are summarized on the topic of biodegradable micro- and nanoswimmers for biomedical applications, with a focus on targeted therapeutic delivery.


Subject(s)
Biopolymers/chemistry , Nanostructures/chemistry , Robotics , Animals , Drug Carriers/chemistry , Humans , Hydrogels/chemistry , Light , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Reactive Oxygen Species/metabolism
20.
Adv Sci (Weinh) ; 7(12): 1903172, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596108

ABSTRACT

Microfluidic technologies have emerged as advanced tools for surface-enhanced Raman spectroscopy (SERS). They have proved to be particularly appealing for in situ and real-time detection of analytes at extremely low concentrations and down to the 10 × 10-15 m level. However, the ability to prepare reconfigurable and reusable devices endowing multiple detection capabilities is an unresolved challenge. Herein, a microfluidic-based method that allows an extraordinary spatial control over the localization of multiple active SERS substrates in a single microfluidic channel is presented. It is shown that this technology provides for exquisite control over analyte transport to specific detection points, while avoiding cross-contamination; a feature that enables the simultaneous detection of multiple analytes within the same microfluidic channel. Additionally, it is demonstrated that the SERS substrates can be rationally designed in a straightforward manner and that they allow for the detection of single molecules (at concentrations as low as 10-14 m). Finally, it is shown that rapid etching and reconstruction of SERS substrates provides for reconfigurable and reusable operation.

SELECTION OF CITATIONS
SEARCH DETAIL