Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 299(8): 105050, 2023 08.
Article in English | MEDLINE | ID: mdl-37451479

ABSTRACT

Cytochrome P450 CYP102A1 is a prototypic biocatalyst that has great potential in chemical synthesis, drug discovery, and biotechnology. CYP102A1 variants engineered by directed evolution and/or rational design are capable of catalyzing the oxidation of a wide range of organic compounds. However, it is difficult to foresee the outcome of engineering CYP102A1 for a compound of interest. Here, we introduce UniDesign as a computational framework for enzyme design and engineering. We tested UniDesign by redesigning CYP102A1 for stereoselective metabolism of omeprazole (OMP), a proton pump inhibitor, starting from an active but nonstereoselective triple mutant (TM: A82F/F87V/L188Q). To shift stereoselectivity toward (R)-OMP, we computationally scanned three active site positions (75, 264, and 328) for mutations that would stabilize the binding of the transition state of (R)-OMP while destabilizing that of (S)-OMP and picked three variants, namely UD1 (TM/L75I), UD2 (TM/A264G), and UD3 (TM/A328V), for experimentation, based on computed energy scores and models. UD1, UD2, and UD3 exhibit high turnover rates of 55 ± 4.7, 84 ± 4.8, and 79 ± 5.7 min-1, respectively, for (R)-OMP hydroxylation, whereas the corresponding rates for (S)-OMP are only 2.2 ± 0.19, 6.0 ± 0.68, and 14 ± 2.8 min-1, yielding an enantiomeric excess value of 92, 87, and 70%, respectively. These results suggest the critical roles of L75I, A264G, and A328V in steering OMP in the optimal orientation for stereoselective oxidation and demonstrate the utility of UniDesign for engineering CYP102A1 to produce drug metabolites of interest. The results are discussed in the context of protein structures.


Subject(s)
Bacterial Proteins , Cytochrome P-450 Enzyme System , NADPH-Ferrihemoprotein Reductase , Omeprazole , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , NADPH-Ferrihemoprotein Reductase/chemistry , Omeprazole/metabolism , Oxidation-Reduction , Protein Engineering
2.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34265237

ABSTRACT

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Quantitative Trait Loci , Transcription Factor 7-Like 2 Protein/genetics , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Case-Control Studies , Caspase 3/genetics , Caspase 3/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Endothelial Cells/pathology , Gene Expression Regulation , Genome, Human , Genome-Wide Association Study , Humans , Introns , Michigan , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mutation , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
3.
Arterioscler Thromb Vasc Biol ; 43(2): 312-322, 2023 02.
Article in English | MEDLINE | ID: mdl-36519469

ABSTRACT

BACKGROUND: The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS: A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS: The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS: BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Induced Pluripotent Stem Cells , Humans , Bicuspid Aortic Valve Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Heart Valve Diseases/metabolism , Endothelial Cells/metabolism , Genome-Wide Association Study , Aortic Valve/metabolism , Regulatory Sequences, Nucleic Acid , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism
4.
Arterioscler Thromb Vasc Biol ; 43(12): 2285-2297, 2023 12.
Article in English | MEDLINE | ID: mdl-37823268

ABSTRACT

BACKGROUND: Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS: Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS: We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS: Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.


Subject(s)
Aortic Aneurysm, Thoracic , Calcinosis , Humans , Male , Transcriptome , Aortic Aneurysm, Thoracic/metabolism , Aorta, Thoracic/metabolism , Gene Expression Profiling/methods , Calcinosis/metabolism , Myocytes, Smooth Muscle/metabolism
5.
Arterioscler Thromb Vasc Biol ; 43(1): e11-e28, 2023 01.
Article in English | MEDLINE | ID: mdl-36412196

ABSTRACT

BACKGROUND: Elevated plasma Lp-PLA2 (lipoprotein-associated phospholipase A2) activity is closely associated with an increased risk of cardiovascular events. However, whether and how Lp-PLA2 is directly involved in the pathogenesis of atherosclerosis is still unclear. To examine the hypothesis that Lp-PLA2 could be a potential preventative target of atherosclerosis, we generated Lp-PLA2 knockout rabbits and investigated the pathophysiological functions of Lp-PLA2. METHODS: Lp-PLA2 knockout rabbits were generated using CRISPR/Cas9 system to assess the role of Lp-PLA2 in plasma lipids regulation and identify its underlying molecular mechanisms. Homozygous knockout rabbits along with wild-type rabbits were fed a cholesterol-rich diet for up to 14 weeks and their atherosclerotic lesions were compared. Moreover, the effects of Lp-PLA2 deficiency on the key cellular behaviors in atherosclerosis were assessed in vitro. RESULTS: When rabbits were fed a standard diet, Lp-PLA2 deficiency led to a significant reduction in plasma lipids. The decreased protein levels of SREBP2 (sterol regulatory element-binding protein 2) and HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) in livers of homozygous knockout rabbits indicated that the cholesterol biosynthetic pathway was impaired with Lp-PLA2 deficiency. In vitro experiments further demonstrated that intracellular Lp-PLA2 efficiently enhanced SREBP2-related cholesterol biosynthesis signaling independently of INSIGs (insulin-induced genes). When fed a cholesterol-rich diet, homozygous knockout rabbits exhibited consistently lower level of hypercholesterolemia, and their aortic atherosclerosis lesions were significantly reduced by 60.2% compared with those of wild-type rabbits. The lesions of homozygous knockout rabbits were characterized by reduced macrophages and the expression of inflammatory cytokines. Macrophages of homozygous knockout rabbits were insensitive to M1 polarization and showed reduced DiI-labeled lipoprotein uptake capacity compared with wild-type macrophages. Lp-PLA2 deficiency also inhibited the adhesion between monocytes and endothelial cells. CONCLUSIONS: These results demonstrate that Lp-PLA2 plays a causal role in regulating blood lipid homeostasis and Lp-PLA2 deficiency protects against dietary cholesterol-induced atherosclerosis in rabbits. Lp-PLA2 could be a potential target for the prevention of atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipidemias , Animals , Rabbits , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Lipoprotein(a) , Phospholipases , Endothelial Cells/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Lipids , Cholesterol
6.
Hum Mol Genet ; 30(9): 836-842, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33693786

ABSTRACT

Genomic discovery efforts for hematological traits have been successfully conducted through genome-wide association study on samples of predominantly European ancestry. We sought to conduct unbiased genetic discovery for coding variants that influence hematological traits in a Han Chinese population. A total of 5257 Han Chinese subjects from Beijing, China were included in the discovery cohort and analyzed by an Illumina ExomeChip array. Replication analyses were conducted in 3827 independent Chinese subjects. We analyzed 12 hematological traits and identified 22 exome-wide significant single-nucleotide polymorphisms (SNP)-trait associations with 15 independent SNPs. Our study provides replication for two associations previously reported but not replicated. Further, one association was identified and replicated in the current study, of a coding variant in the myeloproliferative leukemia (MPL) gene, c.793C > T, p.Leu265Phe (L265F) with increased platelet count (ß = 20.6 109 cells/l, Pmeta-analysis = 2.6 × 10-13). This variant is observed at ~2% population frequency in East Asians, whereas it has not been reported in gnomAD European or African populations. Functional analysis demonstrated that expression of MPL L265F in Ba/F3 cells resulted in enhanced phosphorylation of Stat3 and ERK1/2 as compared with the reference MPL allele, supporting altered activation of the JAK-STAT signal transduction pathway as the mechanism underlying the novel association between MPL L265F and platelet count.


Subject(s)
Genome-Wide Association Study , Asian People/genetics , Humans , Platelet Count , Polymorphism, Single Nucleotide/genetics , Receptors, Thrombopoietin/genetics , Signal Transduction/genetics
7.
J Mol Cell Cardiol ; 162: 10-19, 2022 01.
Article in English | MEDLINE | ID: mdl-34474073

ABSTRACT

Our previous study has revealed that exosomes from adipose-derived stem cells (ASCs) promote angiogenesis in subcutaneously transplanted gels by delivery of microRNA-31 (miR-31) which targets factor inhibiting hypoxia-inducible factor-1 (FIH1) in recipient cells. Here we hypothesized that ASC exosomes alleviate ischemic diseases through miR-31/FIH1/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. Exosomes from ASCs were characterized with nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting analysis for exosomal markers. Results from immunoblotting and laser imaging of ischemic mouse hindlimb revealed that miR-31 enriched ASC exosomes inhibited FIH1 expression and enhanced the blood perfusion, respectively. These effects were impaired when using miR-31-depleted exosomes. Immunohistochemistry analysis showed that administration of exosomes resulted in a higher arteriole density and larger CD31+ area in ischemic hindlimb than miR-31-delpleted exosomes. Similarly, knockdown of miR-31 in exosomes reduced the effects of the exosomes on increasing ventricular fraction shortening and CD31+ area, and on decreasing infarct size. Exosomes promoted endothelial cell migration and tube formation. These changes were attenuated when miR-31 was depleted in the exosomes or when FIH1 was overexpressed in the endothelial cells. Furthermore, the results from immunocytochemistry, co-immunoprecipitation, and luciferase reporter assay demonstrated that the effects of exosomes on nuclear translocation, binding with co-activator p300, and activation of HIF-1α were decreased when miR-31 was depleted in the exosomes or FIH1 was overexpressed. Our findings provide evidence that exosomes from ASCs promote angiogenesis in both mouse ischemic hindlimb and heart through transport of miR-31 which targets FIH1 and therefore triggers HIF-1α transcriptional activation.


Subject(s)
Exosomes , MicroRNAs , Myocardial Infarction , Animals , Endothelial Cells/metabolism , Exosomes/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Stem Cells/metabolism
8.
Circulation ; 144(14): 1145-1159, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34346740

ABSTRACT

BACKGROUND: Loeys-Dietz syndrome (LDS) is an inherited disorder predisposing individuals to thoracic aortic aneurysm and dissection. Currently, there are no medical treatments except surgical resection. Although the genetic basis of LDS is well-understood, molecular mechanisms underlying the disease remain elusive, impeding the development of a therapeutic strategy. In addition, aortic smooth muscle cells (SMCs) have heterogenous embryonic origins, depending on their spatial location, and lineage-specific effects of pathogenic variants on SMC function, likely causing regionally constrained LDS manifestations, have been unexplored. METHODS: We identified an LDS family with a dominant pathogenic variant in the TGFBR1 gene (TGFBR1A230T) causing aortic root aneurysm and dissection. To accurately model the molecular defects caused by this mutation, we used human induced pluripotent stem cells from a subject with normal aorta to generate human induced pluripotent stem cells carrying TGFBR1A230T, and corrected the mutation in patient-derived human induced pluripotent stem cells using CRISPR-Cas9 gene editing. After their lineage-specific SMC differentiation through cardiovascular progenitor cell (CPC) and neural crest stem cell lineages, we used conventional molecular techniques and single-cell RNA sequencing to characterize the molecular defects. The resulting data led to subsequent molecular and functional rescue experiments using activin A and rapamycin. RESULTS: Our results indicate the TGFBR1A230T mutation impairs contractile transcript and protein levels, and function in CPC-SMC, but not in neural crest stem cell-SMC. Single-cell RNA sequencing results implicate defective differentiation even in TGFBR1A230T/+ CPC-SMC including disruption of SMC contraction and extracellular matrix formation. Comparison of patient-derived and mutation-corrected cells supported the contractile phenotype observed in the mutant CPC-SMC. TGFBR1A230T selectively disrupted SMAD3 (SMAD family member 3) and AKT (AKT serine/threonine kinase) activation in CPC-SMC, and led to increased cell proliferation. Consistently, single-cell RNA sequencing revealed molecular similarities between a loss-of-function SMAD3 mutation (SMAD3c.652delA/+) and TGFBR1A230T/+. Last, combination treatment with activin A and rapamycin during or after SMC differentiation significantly improved the mutant CPC-SMC contractile gene expression and function, and rescued the mechanical properties of mutant CPC-SMC tissue constructs. CONCLUSIONS: This study reveals that a pathogenic TGFBR1 variant causes lineage-specific SMC defects informing the etiology of LDS-associated aortic root aneurysm. As a potential pharmacological strategy, our results highlight a combination treatment with activin A and rapamycin that can rescue the SMC defects caused by the variant.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Loeys-Dietz Syndrome/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Humans , Loeys-Dietz Syndrome/pathology
9.
Pharmacol Res ; 178: 106183, 2022 04.
Article in English | MEDLINE | ID: mdl-35306139

ABSTRACT

Most blood vessels are surrounded by perivascular adipose tissue (PVAT), which is a unique adipose tissue that plays critical roles in vascular physiology and pathophysiology. PVAT displays regional differences that impact vascular homeostasis. Angiotensin II (Ang II) is the main biologically active component of the renin-angiotensin-aldosterone system (RAAS), which has been extensively studied in vascular biology. However, the effects of Ang II on PVAT are less explored and remain to be elucidated. In this study, we systematically investigated the regional heterogeneity of three portions of aortic PVAT, i.e., ascending thoracic aortic PVAT (ATA-PVAT), descending thoracic aortic PVAT (DTA-PVAT) and abdominal aortic PVAT (AA-PVAT), and their responses to 7-day Ang II infusion using RNA sequencing. We found that AA-PVAT is clearly distinguished from both ATA-PVAT and DTA-PVAT, with significantly down-regulated oxidative phosphorylation and up-regulated inflammatory response pathways. Furthermore, AA-PVAT expresses lower levels of brown adipocyte marker genes, such as Ucp1, Cidea, Cox8b, Dio2 and Pgc1α, but expresses higher levels of proinflammatory genes, such as Ccl2, Il1ß and Tnfα, and components of the RAAS, including Agt, Ace and Agtr1a. Ang II infusion significantly down-regulated oxidative phosphorylation in all regions of aortic PVAT and significantly up-regulated inflammatory response specifically in ATA-PVAT and DTA-PVAT. Moreover, ATA-PVAT was most responsive to Ang II induced inflammation. We further used CDGSH iron-sulfur domain-containing protein 1 (a.k.a. mitoNEET) transgenic mice that exhibit enhanced brown adipose tissue (BAT)-like phenotype in aortic PVAT, as indicated by elevated expression levels of brown adipocyte marker genes, and found that the enhanced BAT-like phenotype of aortic PVAT could counterbalance Ang II induced inflammatory and oxidative effects.


Subject(s)
Adipose Tissue , Angiotensin II , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Aorta, Thoracic/metabolism , Iron-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mice , Renin-Angiotensin System , Sequence Analysis, RNA
10.
Arterioscler Thromb Vasc Biol ; 41(4): e208-e223, 2021 04.
Article in English | MEDLINE | ID: mdl-33535788
11.
Arterioscler Thromb Vasc Biol ; 41(2): 783-795, 2021 02.
Article in English | MEDLINE | ID: mdl-33297755

ABSTRACT

OBJECTIVE: Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis. However, the role of endothelial TFEB in metabolism remains to be explored. In this study, we sought to investigate the role of endothelial TFEB in glucose metabolism and underlying molecular mechanisms. Approach and Results: To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout and EC-selective TFEB transgenic mice fed a high-fat diet. EC-selective TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-selective TFEB transgenic mice showed improved glucose tolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts Akt (AKT serine/threonine kinase) signaling. Adenovirus-mediated overexpression of TFEB consistently activates Akt and significantly increases glucose uptake in ECs. Mechanistically, TFEB upregulates IRS1 and IRS2 (insulin receptor substrate 1 and 2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495, and miR-548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-selective TFEB knockout mice and consistently improved in EC-selective TFEB transgenic mice on high-fat diet. CONCLUSIONS: Our data revealed a critical role of TFEB in endothelial metabolism and suggest that TFEB constitutes a potential molecular target for the treatment of vascular and metabolic diseases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Blood Glucose/metabolism , Endothelial Cells/metabolism , Glucose Intolerance/metabolism , Insulin Receptor Substrate Proteins/metabolism , Adipose Tissue/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blood Glucose/drug effects , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/drug effects , Female , Glucose Intolerance/blood , Glucose Intolerance/drug therapy , Glucose Intolerance/genetics , Humans , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin/pharmacology , Insulin Receptor Substrate Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
12.
Eur Heart J ; 42(42): 4373-4385, 2021 11 07.
Article in English | MEDLINE | ID: mdl-34534287

ABSTRACT

AIMS: Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS: We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION: Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.


Subject(s)
Aortic Aneurysm , Animals , Biomarkers , Dissection , Humans , Metabolomics , Mice , Succinic Acid
13.
Genomics ; 113(5): 3216-3223, 2021 09.
Article in English | MEDLINE | ID: mdl-34051323

ABSTRACT

The European rabbit (Oryctolagus cuniculus) is important as a biomedical model given its unique features in immunity and metabolism. The current reference genome OryCun2.0 established with whole-genome shotgun sequencing was quite fragmented and had not been updated for ten years. In this work, we provided a new rabbit genome assembly UM_NZW_1.0 to improve OryCun2.0 by leveraging the contig lengths based on long-read sequencing and a wealth of available Illumina paired-end sequence data. UM_NZW_1.0 showed a remarkable increase of continuity compared with OryCun2.0, with 5 times longer contig N50 and approximately 75% gaps closed. Many of the closed gaps were overlapped with protein-coding genes or transcriptional features, resulting in an enhancement of gene annotations. In particular, UM_NZW_1.0 presented a more complete landscape of the MHC region and the IGH locus, therefore provided a valuable resource for future researches on rabbits.


Subject(s)
High-Throughput Nucleotide Sequencing , Animals , Molecular Sequence Annotation , Rabbits , Sequence Analysis, DNA , Whole Genome Sequencing
14.
Circulation ; 142(5): 483-498, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32354235

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Aortic Aneurysm, Abdominal/prevention & control , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Disease Models, Animal , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Aminopropionitrile/toxicity , Aneurysm, Ruptured/etiology , Angiotensin II/toxicity , Animals , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Apoptosis/drug effects , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cholesterol/metabolism , Down-Regulation , Drug Evaluation, Preclinical , Gain of Function Mutation , Gene Expression Regulation , Genetic Vectors/toxicity , Humans , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/physiology , Transcriptome/drug effects
15.
Gastroenterology ; 158(8): 2266-2281.e27, 2020 06.
Article in English | MEDLINE | ID: mdl-32105727

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is characterized by excessive hepatic accumulation of triglycerides. We aimed to identify metabolites that differ in plasma of patients with liver steatosis vs healthy individuals (controls) and investigate the mechanisms by which these might contribute to fatty liver in mice. METHODS: We obtained blood samples from 15 patients with liver steatosis and 15 controls from a single center in China (discovery cohort). We performed untargeted liquid chromatography with mass spectrometry analysis of plasma to identify analytes associated with liver steatosis. We then performed targeted metabolomic analysis of blood samples from 2 independent cohorts of individuals who underwent annual health examinations in China (1157 subjects with or without diabetes and 767 subjects with or without liver steatosis; replication cohorts). We performed mass spectrometry analysis of plasma from C57BL/6J mice, germ-free, and mice given antibiotics. C57BL/6J mice were given 0.325% (m/v) N,N,N-trimethyl-5-aminovaleric acid (TMAVA) in their drinking water and placed on a 45% high-fat diet (HFD) for 2 months. Plasma, liver tissues, and fecal samples were collected; fecal samples were analyzed by 16S ribosomal RNA gene sequencing. C57BL/6J mice with CRISPR-mediated disruption of the gene encoding γ-butyrobetaine hydroxylase (BBOX-knockout mice) were also placed on a 45% HFD for 2 months. Hepatic fatty acid oxidation (FAO) in liver tissues was determined by measuring liberation of 3H2O from [3H] palmitic acid. Liver tissues were analyzed by electron microscopy, to view mitochondria, and proteomic analyses. We used surface plasmon resonance analysis to quantify the affinity of TMAVA for BBOX. RESULTS: Levels of TMAVA, believed to be a metabolite of intestinal microbes, were increased in plasma from subjects with liver steatosis compared with controls, in the discovery and replication cohorts. In 1 replication cohort, the odds ratio for fatty liver in subjects with increased liver plasma levels of TMAVA was 1.82 (95% confidence interval [CI], 1.14-2.90; P = .012). Plasma from mice given antibiotics or germ-free mice had significant reductions in TMAVA compared with control mice. We found the intestinal bacteria Enterococcus faecalis and Pseudomonas aeruginosa to metabolize trimethyllysine to TMAVA; levels of trimethyllysine were significantly higher in plasma from patients with steatosis than controls. We found TMAVA to bind and inhibit BBOX, reducing synthesis of carnitine. Mice given TMAVA had alterations in their fecal microbiomes and reduced cold tolerance; their plasma and liver tissue had significant reductions in levels of carnitine and acyl-carnitine and their hepatocytes had reduced mitochondrial FAO compared with mice given only an HFD. Mice given TMAVA on an HFD developed liver steatosis, which was reduced by carnitine supplementation. BBOX-knockout mice had carnitine deficiency and decreased FAO, increasing uptake and liver accumulation of free fatty acids and exacerbating HFD-induced fatty liver. CONCLUSIONS: Levels of TMAVA are increased in plasma from subjects with liver steatosis. In mice, intestinal microbes metabolize trimethyllysine to TMAVA, which reduces carnitine synthesis and FAO to promote steatosis.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome , Intestines/microbiology , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Valerates/metabolism , gamma-Butyrobetaine Dioxygenase/antagonists & inhibitors , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Case-Control Studies , Cross-Sectional Studies , Diet, High-Fat , Dysbiosis , Fatty Acids, Nonesterified/metabolism , Feces/microbiology , Female , Humans , Lipolysis/drug effects , Liver/enzymology , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , Up-Regulation , Valerates/blood , Valerates/toxicity , Young Adult , gamma-Butyrobetaine Dioxygenase/genetics , gamma-Butyrobetaine Dioxygenase/metabolism
16.
Arterioscler Thromb Vasc Biol ; 40(5): 1094-1109, 2020 05.
Article in English | MEDLINE | ID: mdl-32188271

ABSTRACT

Adipose tissues are present at multiple locations in the body. Most blood vessels are surrounded with adipose tissue which is referred to as perivascular adipose tissue (PVAT). Similarly to adipose tissues at other locations, PVAT harbors many types of cells which produce and secrete adipokines and other undetermined factors which locally modulate PVAT metabolism and vascular function. Uncoupling protein-1, which is considered as a brown fat marker, is also expressed in PVAT of rodents and humans. Thus, compared with other adipose tissues in the visceral area, PVAT displays brown-like characteristics. PVAT shows a distinct function in the cardiovascular system compared with adipose tissues in other depots which are not adjacent to the vascular tree. Growing and extensive studies have demonstrated that presence of normal PVAT is required to maintain the vasculature in a functional status. However, excessive accumulation of dysfunctional PVAT leads to vascular disorders, partially through alteration of its secretome which, in turn, affects vascular smooth muscle cells and endothelial cells. In this review, we highlight the cross talk between PVAT and vascular smooth muscle cells and its roles in vascular remodeling and blood pressure regulation.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Endothelial Cells/metabolism , Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Obesity/metabolism , Paracrine Communication , Adipocytes/pathology , Adipose Tissue/pathology , Adipose Tissue/physiopathology , Animals , Blood Pressure , Endothelial Cells/pathology , Humans , Hypertension/epidemiology , Hypertension/pathology , Hypertension/physiopathology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Obesity/epidemiology , Obesity/pathology , Obesity/physiopathology , Phenotype , Risk Factors , Signal Transduction , Vascular Remodeling
17.
Arterioscler Thromb Vasc Biol ; 40(7): 1651-1663, 2020 07.
Article in English | MEDLINE | ID: mdl-32404006

ABSTRACT

OBJECTIVE: SMAD3 pathogenic variants are associated with the development of thoracic aortic aneurysms. We sought to determine the role of SMAD3 in lineage-specific vascular smooth muscle cells (VSMCs) differentiation and function. Approach and Results: SMAD3 c.652delA, a frameshift mutation and nonsense-mediated decay, was introduced in human-induced pluripotent stem cells using CRISPR-Cas9. The wild-type and SMAD3-/- (c.652delA) human-induced pluripotent stem cells were differentiated into cardiovascular progenitor cells or neural crest stem cells and then to lineage-specific VSMCs. Differentiation, contractility, extracellular matrix synthesis, and TGF-ß (transforming growth factor-ß) signaling of the differentiated VSMCs were analyzed. The homozygous frameshift mutation resulted in SMAD3 deficiency and was confirmed in human-induced pluripotent stem cells by Sanger sequencing and immunoblot analysis. In cardiovascular progenitor cell-VSMCs, SMAD3 deletion significantly disrupted canonical TGF-ß signaling and decreased gene expression of VSMC markers, including SM α-actin, myosin heavy chain 11, calponin-1, SM22α, and key controlling factors, SRF and myocardin, but increased collagen expression. The loss of SMAD3 significantly decreased VSMC contractility. In neural crest stem cells-VSMCs, SMAD3 deficiency did not significantly affect the VSMC differentiation but decreased ELN (elastin) expression and increased phosphorylated SMAD2. Expression of mir-29 was increased in SMAD3-/- VSMCs, and inhibition of mir-29 partially rescued ELN expression. CONCLUSIONS: SMAD3-dependent TGF-ß signaling was essential for the differentiation of cardiovascular progenitor cell-VSMCs but not for the differentiation of neural crest stem cell-VSMCs. The lineage-specific TGF-ß responses in human VSMCs may potentially contribute to the development of aortic root aneurysms in patients with SMAD3 mutations.


Subject(s)
Aortic Aneurysm, Thoracic/metabolism , Cell Differentiation , Cell Lineage , Induced Pluripotent Stem Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Smad3 Protein/deficiency , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/physiopathology , Cells, Cultured , Elastin/genetics , Elastin/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Frameshift Mutation , Gene Expression Regulation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Signal Transduction , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta/metabolism , Vascular Remodeling , Vasoconstriction
18.
Arterioscler Thromb Vasc Biol ; 40(6): 1533-1542, 2020 06.
Article in English | MEDLINE | ID: mdl-32268786

ABSTRACT

OBJECTIVE: Clopidogrel is a commonly used P2Y12 inhibitor to treat and prevent arterial thrombotic events. Clopidogrel is a prodrug that requires bioactivation by CYP (cytochrome P450) enzymes to exert antiplatelet activity. Diabetes mellitus is associated with an increased risk of ischemic events, and impaired ability to generate the active metabolite (AM) from clopidogrel. The objective of this study is to identify the mechanism of clopidogrel resistance in a murine model of diet-induced obesity (DIO). Approach and Results: C57BL/6J mice and IL-1R-/- mice were given high-fat diet for 10 weeks to generate a murine model of diet-induced obesity. Platelet aggregation and carotid arterial thrombosis were assessed in response to clopidogrel treatment. Wild-type DIO mice exhibited resistance to antiplatelet and antithrombotic effects of clopidogrel that was associated with reduced hepatic expression of CYP genes and reduced generation of the AM. IL (Interleukin)-1 receptor-deficient DIO (IL1R-/- DIO) mice showed no resistance to clopidogrel. Lack of resistance was accompanied by increased exposure of the clopidogrel AM. This resistance was also absent when wild-type DIO mice were treated with the conjugate of the clopidogrel AM, DT-678. CONCLUSIONS: These findings indicate that antiplatelet effects of clopidogrel may be impaired in the setting of diabetes mellitus due to reduced prodrug bioactivation related to IL-1 receptor signaling. Therapeutic targeting of P2Y12 in patients with diabetes mellitus using the conjugate of clopidogrel AM may lead to improved outcomes.


Subject(s)
Clopidogrel/pharmacokinetics , Clopidogrel/therapeutic use , Drug Resistance , Obesity/complications , Receptors, Interleukin-1/physiology , Animals , Carotid Artery Thrombosis/prevention & control , Clopidogrel/pharmacology , Cytochrome P-450 Enzyme System/genetics , Diabetes Mellitus , Diet, High-Fat , Disease Models, Animal , Fibrinolytic Agents , Gene Expression , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/enzymology , Obesity/etiology , Obesity/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Receptors, Interleukin-1/deficiency
19.
Arterioscler Thromb Vasc Biol ; 40(10): 2494-2507, 2020 10.
Article in English | MEDLINE | ID: mdl-32787523

ABSTRACT

OBJECTIVE: Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS: Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.


Subject(s)
Aortic Aneurysm, Abdominal/prevention & control , Aortitis/prevention & control , Chromosomal Proteins, Non-Histone/deficiency , Extracellular Matrix/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortitis/genetics , Aortitis/metabolism , Aortitis/pathology , Case-Control Studies , Cathepsins/metabolism , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , Disease Models, Animal , Extracellular Matrix/pathology , Humans , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Signal Transduction
20.
Arterioscler Thromb Vasc Biol ; 40(9): 2095-2107, 2020 09.
Article in English | MEDLINE | ID: mdl-32757647

ABSTRACT

OBJECTIVE: Apo (apolipoprotein) CIII mediates the metabolism of triglyceride (TG)-rich lipoproteins. High levels of plasma apoCIII are positively correlated with the plasma TG levels and increase the cardiovascular risk. However, whether apoCIII is directly involved in the development of atherosclerosis has not been fully elucidated. Approach and Results: To examine the possible roles of apoCIII in lipoprotein metabolism and atherosclerosis, we generated apoCIII KO (knockout) rabbits using ZFN (zinc finger nuclease) technique. On a normal standard diet, apoCIII KO rabbits exhibited significantly lower plasma levels of TG than those of WT (wild type) rabbits while total cholesterol and HDL (high-density lipoprotein) cholesterol levels were unchanged. Analysis of lipoproteins isolated by sequential ultracentrifugation revealed that reduced plasma TG levels in KO rabbits were accompanied by prominent reduction of VLDLs (very-low-density lipoproteins) and IDLs (intermediate-density lipoproteins). In addition, KO rabbits showed faster TG clearance rate after intravenous fat load than WT rabbits. On a cholesterol-rich diet, KO rabbits exhibited constantly and significantly lower levels of plasma total cholesterol and TG than WT rabbits, which was caused by a remarkable reduction of ß-VLDLs-the major atherogenic lipoproteins. ß-VLDLs of KO rabbits showed higher uptake by cultured hepatocytes and were cleared faster from the circulation than ß-VLDLs isolated from WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. CONCLUSIONS: These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.


Subject(s)
Aortic Diseases/prevention & control , Apolipoprotein C-III/deficiency , Atherosclerosis/prevention & control , Coronary Artery Disease/prevention & control , Triglycerides/blood , Animals , Animals, Genetically Modified , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoprotein C-III/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/blood , Cholesterol, HDL/blood , Cholesterol, VLDL/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Disease Models, Animal , Female , Hep G2 Cells , Hepatocytes/metabolism , Humans , Lipoproteins, IDL/blood , Liver/metabolism , Male , Oxidation-Reduction , Plaque, Atherosclerotic , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL