Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279648

ABSTRACT

Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder, find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151 and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource for further research on the function and molecular mechanism of coronavirus circRNA.


Subject(s)
COVID-19 , MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , SARS-CoV-2/genetics , COVID-19/genetics , RNA, Viral/genetics , Neoplasms/genetics , MicroRNAs/genetics
2.
PLoS Comput Biol ; 20(1): e1011851, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289973

ABSTRACT

The unique expression patterns of circRNAs linked to the advancement and prognosis of cancer underscore their considerable potential as valuable biomarkers. Repurposing existing drugs for new indications can significantly reduce the cost of cancer treatment. Computational prediction of circRNA-cancer and drug-cancer relationships is crucial for precise cancer therapy. However, prior computational methods fail to analyze the interaction between circRNAs, drugs, and cancer at the systematic level. It is essential to propose a method that uncover more valuable information for achieving cancer-centered multi-association prediction. In this paper, we present a novel computational method, AutoEdge-CCP, to unveil cancer-associated circRNAs and drugs. We abstract the complex relationships between circRNAs, drugs, and cancer into a multi-source heterogeneous network. In this network, each molecule is represented by two types information, one is the intrinsic attribute information of molecular features, and the other is the link information explicitly modeled by autoGNN, which searches information from both intra-layer and inter-layer of message passing neural network. The significant performance on multi-scenario applications and case studies establishes AutoEdge-CCP as a potent and promising association prediction tool.


Subject(s)
Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neural Networks, Computer , Biomarkers
3.
BMC Biol ; 22(1): 44, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38408987

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) can regulate microRNA activity and are related to various diseases, such as cancer. Functional research on circRNAs is the focus of scientific research. Accurate identification of circRNAs is important for gaining insight into their functions. Although several circRNA prediction models have been developed, their prediction accuracy is still unsatisfactory. Therefore, providing a more accurate computational framework to predict circRNAs and analyse their looping characteristics is crucial for systematic annotation. RESULTS: We developed a novel framework, CircDC, for classifying circRNAs from other lncRNAs. CircDC uses four different feature encoding schemes and adopts a multilayer convolutional neural network and bidirectional long short-term memory network to learn high-order feature representation and make circRNA predictions. The results demonstrate that the proposed CircDC model is more accurate than existing models. In addition, an interpretable analysis of the features affecting the model is performed, and the computational framework is applied to the extended application of circRNA identification. CONCLUSIONS: CircDC is suitable for the prediction of circRNA. The identification of circRNA helps to understand and delve into the related biological processes and functions. Feature importance analysis increases model interpretability and uncovers significant biological properties. The relevant code and data in this article can be accessed for free at https://github.com/nmt315320/CircDC.git .


Subject(s)
MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , Neural Networks, Computer , Neoplasms/genetics , Computational Biology/methods
4.
Article in English | MEDLINE | ID: mdl-38896510

ABSTRACT

Reconstructing gene regulatory networks (GRNs) using single-cell RNA sequencing (scRNA-seq) data holds great promise for unraveling cellular fate development and heterogeneity. While numerous machine-learning methods have been proposed to infer GRNs from scRNA-seq gene expression data, many of them operate solely in a statistical or black box manner, limiting their capacity for making causal inferences between genes. In this study, we introduce GRN inference with Accuracy and Causal Explanation (GRACE), a novel graph-based causal autoencoder framework that combines a structural causal model (SCM) with graph neural networks (GNNs) to enable GRN inference and gene causal reasoning from scRNA-seq data. By explicitly modeling causal relationships between genes, GRACE facilitates the learning of regulatory context and gene embeddings. With the learned gene signals, our model successfully decoding the causal structures and alleviates the accurate determination of multiple attributes of gene regulation that is important to determine the regulatory levels. Through extensive evaluations on seven benchmarks, we demonstrate that GRACE outperforms 14 state-of-the-art GRN inference methods, with the incorporation of causal mechanisms significantly enhancing the accuracy of GRN and gene causality inference. Furthermore, the application to human peripheral blood mononuclear cell (PBMC) samples reveals cell type-specific regulators in monocyte phagocytosis and immune regulation, validated through network analysis and functional enrichment analysis.

SELECTION OF CITATIONS
SEARCH DETAIL