Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Pharm Res ; 39(6): 1165-1180, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35165820

ABSTRACT

PURPOSE: Methicillin-resistant Staphylococcus aureus (MRSA) infection at impaired wound is associated with high risks of developing to persistent bacterial infections since bacterial biofilm is easy to form in MRSA infected wounds. An advanced therapeutic approach to effectively penetrate and eliminate bacterial biofilm and to accelerate cell proliferation and migration at the wound is crucial. METHODS: The poly(ε-caprolactone)-monomethoxyl poly (ethylene glycol) (PCL-mPEG) micelles loaded with Quercetin and Rifampicin (QRMs) were prepared. Bacterial biofilm proliferation and elimination effect of QRMs were evaluated with confocal laser scanning microscopy. Antibacterial assay was further performed to detect antibacterial activity and mechanism. The cell scratch assay and cellular uptake were performed in HaCaT skin epithelial cells. RESULTS: Our results showed that the small sized QRMs could penetrate the interior of MRSA biofilm to disperse and eradicate biofilm. Then, antibiotics are released and accumulated in the acidic biofilm environment. QRMs could kill bacteria through increasing bacterial membrane permeability and altering membrane potential and membrane fluidity. Moreover, QRMs improved intracellular and cytoplasmic delivery efficiency of drugs to epithelial cells, and in the scratch test, presented a stronger ability to promote migration and proliferation of HaCaT cells compared with free drugs. Hemolysis test further proved good biocompatibility of QRMs. CONCLUSIONS: QRMs could potentially be used as a novel dual-functional nanotherapeutic for anti-bacterial infection by eradicating biofilm and accelerating cells proliferation at MRSA infected wound.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Biofilms , Humans , Hydrogen-Ion Concentration , Micelles , Microbial Sensitivity Tests , Wound Infection/drug therapy
2.
BMC Cancer ; 21(1): 844, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294084

ABSTRACT

BACKGROUND: Glioma is a common type of brain tumor and is classified as low and high grades according to morphology and molecules. Growing evidence has proved that long non-coding RNAs (lncRNAs) play pivotal roles in numerous tumors or diseases including glioma. Proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1), as a member of lncRNAs, has been disclosed to play a tumor-promoting role in cancer progression. However, the role of PSMA3-AS1 in glioma remains unknown. Therefore, we concentrated on researching the regulatory mechanism of PSMA3-AS1 in glioma. METHODS: PSMA3-AS1 expression was detected using RT-qPCR. Functional assays were performed to measure the effects of PSMA3-AS1 on glioma progression. After that, ENCORI ( http://starbase.sysu.edu.cn/ ) database was used to predict potential genes that could bind to PSMA3-AS1, and miR-411-3p was chosen for further studies. The interaction among PSMA3-AS1, miR-411-3p and homeobox A10 (HOXA10) were confirmed through mechanism assays. RESULTS: PSMA3-AS1 was verified to be up-regulated in glioma cells and promote glioma progression. Furthermore, PSMA3-AS1 could act as a competitive endogenous RNA (ceRNA) for miR-411-3p to regulate HOXA10 and thus affecting glioma progression. CONCLUSION: PSMA3-AS1 stimulated glioma progression via the miR-411-3p/HOXA10 pathway, which might offer a novel insight for the therapy and treatment of glioma.


Subject(s)
Glioma/genetics , Glioma/metabolism , Homeobox A10 Proteins/metabolism , MicroRNAs/metabolism , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , 3' Untranslated Regions , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Glioma/pathology , Homeobox A10 Proteins/genetics , Humans , Proteasome Endopeptidase Complex/genetics , RNA Interference , Signal Transduction
3.
Faraday Discuss ; 227: 46-60, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33295354

ABSTRACT

Stabilisers, such as surfactants, polymers and polyaromatic molecules, offer an effective way to produce graphene dispersions in water by Liquid Phase Exfoliation (LPE) without degrading the properties of graphene. In particular, pyrene derivatives provide better exfoliation efficiency than traditional surfactants and polymers. A stabiliser is expected to be relatively soluble in order to disperse hydrophobic graphene in water. Here, we show that exfoliation can also be achieved with insoluble pyrene stabilisers if appropriately designed. In particular, bis-pyrene stabilisers (BPSs) functionalised with pyrrolidine provide a higher exfoliation efficiency and percentage of single layers compared to traditional pyrene derivatives under the same experimental conditions. This is attributed to the enhanced interactions between BPS and graphene, provided by the presence of two pyrene binding groups. This approach is therefore attractive not only to produce highly concentrated graphene, but also to use graphene to disperse insoluble molecules in water. The enhanced adsorption of BPS on graphene, however, is reflected in higher toxicity towards human epithelial bronchial immortalized cells, limiting the use of this material for biomedical applications.

4.
Anal Bioanal Chem ; 413(28): 7031-7041, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34661725

ABSTRACT

Salinomycin (SAL) and lasalocid (LAS) are widely used as ionophore antibiotics for coccidiosis control. However, their common use as feed additives has led to the occurrence of feed cross-contamination, which has toxic effects on non-target animals. There have been few reports on multiple-residue detection for SAL and LAS in recent years. In this study, two single-chain antibody fragments (scFvs) capable of specifically recognizing SAL and LAS were constructed. Using LAS-scFv and SAL-scFv as parent antibodies, a complete bispecific single-chain diabody (scDb) against both LAS and SAL was built using splicing by overlap extension polymerase chain reaction (SOE-PCR). In addition, the key amino acid sites and interaction energy of antibody variable regions for small-molecule recognition were preliminarily studied by homology modeling and molecular docking. Finally, IC50 values of 12.9 and 8.6 ng/mL, with a linear range of 6.9-24.0 and 4.7-16.0 ng/mL, were obtained for LAS-scFv and SAL-scFv, respectively. An indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established using scDb to obtain an IC50 of 3.5 ng/mL for LAS and 4.1 ng/mL for SAL, which showed better sensitivity and specificity than those of the parent scFv antibodies. The recoveries of LAS and SAL in chicken liver were 89.2-92.7%(CV<4.7%) and 88.6-90.2% (CV<6.8%)), respectively.


Subject(s)
Antibodies, Bispecific/immunology , Enzyme-Linked Immunosorbent Assay/methods , Lasalocid/analysis , Liver/chemistry , Pyrans/analysis , Single-Chain Antibodies/immunology , Animals , Antibodies, Bispecific/chemistry , Chickens , Lasalocid/immunology , Limit of Detection , Pyrans/immunology , Single-Chain Antibodies/chemistry
5.
Pflugers Arch ; 472(2): 195-216, 2020 02.
Article in English | MEDLINE | ID: mdl-31955265

ABSTRACT

Exchange protein directly activated by cAMP (Epac) mediates cAMP-mediated cell signal independent of protein kinase A (PKA). Mice lacking Epac1 displayed metabolic defect suggesting possible functional involvement of skeletal muscle and exercise capacity. Epac1 was highly expressed, but not Epac 2, in the extensor digitorum longus (EDL) and soleus muscles. The exercise significantly increased protein expression of Epac 1 in EDL and soleus muscle of wild-type (WT) mice. A global proteomics and pathway analyses revealed that Epac 1 deficiency mainly affected "the energy production and utilization" process in the skeletal muscle. We have tested their forced treadmill exercise tolerance. Epac1-/- mice exhibited significantly reduced exercise capacity in the forced treadmill exercise and lower number of type 1 fibers than WT mice. The basal protein level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was reduced in the Epac1-/- mice. Furthermore, increasing expression of PGC-1α by exercise was also significantly attenuated in the skeletal muscle of Epac1-/- mice. The expressions of downstream target genes of PGC-1α, which involved in uptake and oxidation of fatty acids, ERRα and PPARδ, and fatty acid content were lower in muscles of Epac1-/-, suggesting a role of Epac1 in forced treadmill exercise capacity by regulating PGC-1α pathway and lipid metabolism in skeletal muscle. Taken together, Epac1 plays an important role in exercise capacity by regulating PGC-1α and fatty acid metabolism in the skeletal muscle.


Subject(s)
Fatty Acids/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Motor Activity , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Stress, Physiological , Animals , Guanine Nucleotide Exchange Factors/genetics , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Physical Exertion
6.
FASEB J ; 27(10): 4122-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23825225

ABSTRACT

Previously, exchange protein directly activated by cAMP 2 (Epac2) and PKA were known to play a role in glucose-stimulated insulin secretion (GSIS) by pancreatic ß cells. The present study shows that Epac1 mRNA is also expressed by ß cells. Therefore, we generated mice and embryonic stem (ES) cells with deletion of the Epac1 gene to define its role in ß-cell biology and metabolism. The homozygous Epac1-knockout (Epac1(-/-)) mice developed impaired glucose tolerance and GSIS with deranged islet cytoarchitecture, which was confirmed by isolated islets from adult Epac1(-/-) mice. Moreover, Epac1(-/-) mice developed more severe hyperglycemia with increased ß-cell apoptosis and insulitis after multiple low-dose streptozotocin (MLDS; 40 mg/kg) treatment than Epac1(+/+) mice. Interestingly, Epac1(-/-) mice also showed metabolic defects, including increased respiratory exchange ratio (RER) and plasma triglyceride (TG), and more severe diet-induced obesity with insulin resistance, which may contributed to ß-cell dysfunction. However, islets differentiated from Epac1(-/-) ES cells showed insulin secretion defect, reduced Glut2 and PDX-1 expression, and abolished GLP-1-stimulated PCNA induction, suggesting a role of Epac1 in ß-cell function. The current study provides in vitro and in vivo evidence that Epac1 has an important role in GSIS of ß cells and phenotype resembling metabolic syndrome.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Insulin-Secreting Cells/metabolism , Metabolic Syndrome/metabolism , Animals , Blood Glucose , Diabetes Mellitus, Experimental , Dietary Fats/adverse effects , Embryonic Stem Cells , Guanine Nucleotide Exchange Factors/genetics , Mice , Mice, Knockout , Obesity/etiology , Obesity/genetics
7.
PLoS One ; 19(1): e0293193, 2024.
Article in English | MEDLINE | ID: mdl-38165890

ABSTRACT

As the geological fault surface divides the 3D space of stratified ores and rocks into complex spatial surface domains, it is necessary to fully consider the spatial relationship between intersecting fault zones and geological bodies in the process of 3D modeling, and how to accurately establish the 3D finite element mesh of geological bodies in intersecting fault zones is a difficult point in modeling complex geological structure. The laminated geological body in intersecting fault zone is a multifaceted domain grid model consisting of a ground-level grid, a geological fault plane grid, and a range grid. By analyzing the spatial relationship between the geological interfaces of the intersecting fault zones, a closed manifold processing method is proposed to establish the closed manifold spatial surface model of the intersecting fault zones, based on which the closed spatial surface model is tetrahedrally divided to establish a 3D solid model. Finally, the 3D solid model is imported into Ansys to generate a 3D finite element mesh. VC++ is used as the development platform for programming, to realize the generation and closed manifold processing of ground level and geological fault surfaces, and use TetGen library to generate finite element mesh based on irregular tetrahedron. Taking an intersecting fault zone in an open-pit mine as an example, the 3D finite element mesh of laminated geological bodies in the intersecting fault zone is established successfully. This method provides an effective and feasible solution for generating accurate 3D finite element meshes in complex stratigraphic spaces based on closed manifold processing.

8.
Heliyon ; 10(15): e35535, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170176

ABSTRACT

The determination of the critical sliding surface is a crucial aspect of slope stability analysis. In reality, the environment in which slopes are located is often very complex, and the sliding surfaces have different shapes. Therefore, a three-dimensional stability study is proposed, using irregular ellipsoidal shapes as the sliding surface. By constructing the equation of the irregular ellipsoid and applying spatial geometric transformations, an irregular ellipsoid controlled by six parameters, (semi-axis length ( a ), width ( b ), height ( c ), rotation angle ( θ ), and spatial displacements ( t x and t z )), is obtained. The interpolation method is employed to apply the irregular ellipsoid to 3D slopes, thereby generating irregular ellipsoidal sliding surfaces. The slope stability coefficient is calculated by using the residual thrust method and genetic algorithm to determine the critical sliding surface. A comparative stability analysis is conducted between the standard ellipsoidal sliding surface and the irregular ellipsoidal sliding surface through a classic case study. The results show that the Type II irregular ellipsoidal sliding surface aligns well with the mining area. Finally, the research findings are applied to the 3D slope stability analysis of the Shengli West No.2 Open-Pit Coal Mine in China, validating the feasibility of the proposed method.

9.
J Hazard Mater ; 465: 133038, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38118197

ABSTRACT

Arsenic contamination is extremely threatening to the global public health. It was reported that sodium arsenite exposure induces serious kidney injury. However, the underlying mechanism is unclear. Ferroptosis is a newly characterized form of iron-dependent programmed cell death, which is implicated in the pathogenesis of various human diseases, including kidney injury. The lethal accumulation of iron-catalyzed lipid peroxidation is the fundamental biochemical characteristic of ferroptosis. Herein we report that sodium arsenite exposure initiates ferroptosis in mammalian HEK293, MEF and HT1080 cells, and induces ferroptosis-associated acute kidney injury in mice. RNA-binding protein G3BP1, the switch component of stress granules, is indispensable for sodium arsenite-induced ferroptosis in a stress granule-independent manner. Mechanistically, G3BP1 stabilizes IRP2, the master regulator of cellular iron homeostasis, through binding to and suppressing the translation of FBXL5 mRNA, which encodes the E3 ligase component to mediate IRP2 ubiquitination and proteasomal degradation. Sodium arsenite intoxication expedites this G3BP1-FBXL5-IRP2 axis and elevates cellular labile free iron, which is responsible for sodium arsenite exposure-induced lipid peroxidation and ferroptotic cell death. In summary, this study highlights a regulatory module comprising G3BP1-FBXL5-IRP2 axis in determining sodium arsenite-induced ferroptosis and ferroptosis-associated acute kidney injury in mice.


Subject(s)
Acute Kidney Injury , Arsenites , F-Box Proteins , Ferroptosis , Sodium Compounds , Humans , Mice , Animals , DNA Helicases , HEK293 Cells , Iron Regulatory Protein 2/metabolism , Poly-ADP-Ribose Binding Proteins , RNA Helicases/metabolism , RNA Recognition Motif Proteins , Iron/metabolism , Mammals/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , F-Box Proteins/chemistry , F-Box Proteins/genetics , F-Box Proteins/metabolism
10.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753978

ABSTRACT

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Subject(s)
Adipose Tissue , Lipoproteins, HDL , Animals , Mice , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Adipose Tissue/metabolism , Recombinant Proteins , Resveratrol/pharmacology , Resveratrol/chemistry , Obesity/drug therapy , Obesity/metabolism , Hydrogels/chemistry , Mice, Inbred C57BL , Humans , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Drug Delivery Systems , Scavenger Receptors, Class B/metabolism
11.
ACS Appl Mater Interfaces ; 16(12): 14385-14404, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38489475

ABSTRACT

Bacterial infectious diseases pose a significant global challenge. However, conventional antibacterial agents exhibit limited therapeutic effectiveness due to the emergence of drug resistance, necessitating the exploration of novel antibacterial strategies. Nanozymes have emerged as a highly promising alternative to antibiotics, owing to their particular catalytic activities against pathogens. Herein, we synthesized ultrasmall-sized MnFe2O4 nanozymes with different charges (MnFe2O4-COOH, MnFe2O4-PEG, MnFe2O4-NH2) and assessed their antibacterial capabilities. It was found that MnFe2O4 nanozymes exhibited both antibacterial and antibiofilm properties attributed to their excellent peroxidase-like activities and small sizes, enabling them to penetrate biofilms and interact with bacteria. Moreover, MnFe2O4 nanozymes effectively expedite wound healing within 12 days and facilitate tissue repair and regeneration while concurrently reducing inflammation. MnFe2O4-COOH displayed favorable antibacterial activity against Gram-positive bacteria, with 80% bacterial removal efficiency against MRSA by interacting with phosphatidylglycerol (PG) and cardiolipin (CL) of the membrane. By interacting with negatively charged bacteria surfaces, MnFe2O4-NH2 demonstrated the most significant and broad-spectrum antibacterial activity, with 95 and 85% removal efficiency against methicillin-resistant Staphylococcus aureus (MRSA) and P. aeruginosa, respectively. MnFe2O4-PEG dissipated membrane potential and reduced ATP levels in MRSA and P. aeruginosa, showing relatively broad-spectrum antibacterial activity. To conclude, MnFe2O4 nanozymes offer a promising therapeutic approach for treating wound infections.


Subject(s)
Bacterial Infections , Ferric Compounds , Manganese Compounds , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Bacteria
12.
Int J Mol Sci ; 14(7): 14504-17, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23852023

ABSTRACT

Embryo implantation is a highly synchronized bioprocess between an activated blastocyst and a receptive uterus. In mice, successful implantation relies on the dynamic interplay of estrogen and progesterone; however, the key mediators downstream of these hormones that act on blastocyst competency and endometrium receptivity acquisition are largely unknown. In this study, we showed that the expression of osteopontin (OPN) in mouse blastocysts is regulated by ovarian estrogen and uterine micro-environment. OPN mRNA is up-regulated in mouse blastocyst on day 4 of pregnancy, which is associated with ovarian estrogen secretion peak. Hormone treatment in vivo demonstrated that OPN expression in a blastocyst is regulated by estrogen through an estrogen receptor (ER). Our results of the delayed and activated implantation model showed that OPN expression is induced after estrogen injection. While estrogen treatment during embryo culture in vitro showed less effect on OPN expression, the tubal ligation model on day 3 of pregnancy confirmed that the regulation of estrogen on OPN expression in blastocyst might, through some specific cytokines, have existed in a uterine micro-environment. Collectively, our study presents that estrogen regulates OPN expression and it may play an important role during embryo implantation by activating blastocyst competence and facilitating the endometrium acceptable for active blastocyst.


Subject(s)
Blastocyst/metabolism , Estrogens/pharmacology , Osteopontin/metabolism , Uterus/metabolism , Animals , Cytokines/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Estrogens/metabolism , Female , Mice , Osteopontin/genetics , Pregnancy , RNA, Messenger/metabolism , Receptors, Estrogen/metabolism , Up-Regulation
13.
Polymers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37688231

ABSTRACT

Polypropylene (PP)-composite foams were prepared by a combination process of microcellular injection molding (MIM) and in-mold decoration (IMD). The effect of ethylene propylene diene monomer (EPDM) on the crystallization properties, rheological properties, microstructure, and mechanical properties of PP-composite foams was studied. The effect of the additives on the strength and toughness of PP-composite foam as determined by the multiscale simulation method is discussed. The results showed that an appropriate amount of EPDM was beneficial to the cell growth and toughening of the PP blends. When the content of EPDM was 15 wt%, the PP-composite foams obtained the minimum cellular size, the maximum cellular density, and the best impact toughness. At the same time, the mesoscopic simulation shows that the stress concentration is the smallest, which indicates that 15 wt% EPDM has the best toughening effect in these composite materials.

14.
J Agric Food Chem ; 71(47): 18557-18565, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37965986

ABSTRACT

Maduramicin (MAD) and salinomycin (SAL) are the widely used poly(ether ionophore) antibiotics to control coccidiosis in animals. Due to their strong cytotoxicity, strict control over their dosage and residue in animal food is necessary. To improve the detection efficiency of the existing single-residue detection methods, a tetraploid tumor hybrid system was constructed using drug mutagenesis, and the bispecific monoclonal antibody (BsMAb) against MAD and SAL was obtained by hybridization-hybridoma technology. By optimizing the optimal working concentration of the tracer and antibody, a multiresidue fluorescence polarization immunoassay method based on BsMAb was successfully established. The whole detection process takes 10 min, and the LOD values of MAD and SAL were 4.71 and 3.49 ng·g-1, respectively. IC50 values were 6.45 and 6.24 ng·mL-1, respectively. There was no cross-reactivity with other polyether ionophore antibiotics. Finally, a breakthrough in detection was achieved: bispecific monoclonal antibody prepared by the hybridization-hybridoma technology was used to detect maduramicin and salinomycin.


Subject(s)
Anti-Bacterial Agents , Antibodies, Monoclonal , Animals , Ionophores
15.
Nanoscale ; 15(21): 9348-9364, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37165691

ABSTRACT

Enzyme replacement therapy shows remarkable clinical improvement in treating lysosomal storage disorders. However, this therapeutic approach is hampered by limitations in the delivery of the enzyme to cells and tissues. Therefore, there is an urgent, unmet clinical need to develop new strategies to enhance the enzyme delivery to diseased cells. Graphene-based materials, due to their dimensionality and favourable pattern of interaction with cells, represent a promising platform for the loading and delivery of therapeutic cargo. Herein, the potential use of graphene-based materials, including defect-free graphene with positive or negative surface charge and graphene oxide with different lateral dimensions, was investigated for the delivery of lysosomal enzymes in fibroblasts derived from patients with Mucopolysaccharidosis VI and Pompe disease. We report excellent biocompatibility of all graphene-based materials up to a concentration of 100 µg mL-1 in the cell lines studied. In addition, a noticeable difference in the uptake profile of the materials was observed. Neither type of graphene oxide was taken up by the cells to a significant extent. In contrast, the two types of graphene were efficiently taken up, localizing in the lysosomes. Furthermore, we demonstrate that cationic graphene flakes can be used as carriers for arylsulfatase B enzyme, for the delivery of the lacking enzyme to the lysosomes of Mucopolysaccharidosis VI fibroblasts. Arylsulfatase B complexed with cationic graphene flakes not only retained the enzymatic activity, but also exerted biological effects almost twice as high as arylsulfatase B alone in the clearance of the substrate in Mucopolysaccharidosis VI fibroblasts. This study lays the groundwork for the potential use of graphene-based materials as carriers for enzyme replacement therapy in lysosomal storage disorders.


Subject(s)
Graphite , Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Humans , Graphite/metabolism , N-Acetylgalactosamine-4-Sulfatase/metabolism , Mucopolysaccharidosis VI/metabolism , Fibroblasts , Lysosomes/metabolism
16.
Sci Rep ; 12(1): 541, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017616

ABSTRACT

The development and use of intelligent drilling rigs make it available to obtain accurate lithology data of blast drilling. In order to make full use of drilling data to improve blasting efficiency, the following research was carried out. First, a database is established to manage and store the blast hole data recognized by the intelligent drill. Secondly, the blast hole lithology data is taken as a sample, and the inverse distance square method is used to interpolate the blasting range's solid elements to generate a three-dimensional solid model of the blasting rock mass. Afterward, the blasting range polygon and stope triangle grid are used successively in the solid model to obtain the cut 3D solid model of the blasting rock mass; finally, the blast hole charge is calculated based on the cut 3D solid model of the blasting rock. The C++ programming language is used to realize all the blast hole charge amount processes based on the three-dimensional solid model of the blasting rock mass. With the application example of No. 918 bench blasting of Shengli Open-pit Coal Mine in Xilinhot, Inner Mongolia, the blast hole charge amount in the blasting area is calculated and compared with the results of single hole rock property calculation, the results show that the blast hole charge calculated by three-dimensional rock mass model can be effectively reduced.

17.
ACS Appl Mater Interfaces ; 14(41): 46224-46238, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201628

ABSTRACT

Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.


Subject(s)
Curcumin , Wound Infection , Humans , Hydrogels/pharmacology , Micelles , Wound Healing , Curcumin/pharmacology , Curcumin/therapeutic use , Matrix Metalloproteinase 9 , Rifampin/pharmacology , Delayed-Action Preparations/pharmacology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , ErbB Receptors
18.
ACS Appl Nano Mater ; 5(9): 12626-12636, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36185165

ABSTRACT

In this work, we apply liquid cascade centrifugation to highly concentrated graphene dispersions produced by liquid-phase exfoliation in water with an insoluble bis-pyrene stabilizer to obtain fractions containing nanosheets with different lateral size distributions. The concentration, stability, size, thickness, and the cytotoxicity profile are studied as a function of the initial stabilizer concentration for each fraction. Our results show that there is a critical initial amount of stabilizer (0.4 mg/mL) above which the dispersions show reduced concentration, stability, and biocompatibility, no matter the lateral size of the flakes.

19.
Microbiome ; 10(1): 187, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36329549

ABSTRACT

BACKGROUND: Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS: The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION: Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.


Subject(s)
Glucose Intolerance , Insulin Resistance , Animals , Mice , Diet, Western , Dysbiosis , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Inflammation , Mice, Inbred C57BL , Obesity/etiology , RNA, Ribosomal, 16S/genetics
20.
J Pineal Res ; 50(3): 281-91, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21198825

ABSTRACT

Peroxynitrite contributes to diverse cellular stresses in the pathogenesis of ischemic complications. Here, we investigate the downstream effector signaling elements of nitrosative stress which regulate ischemia-like cell death in endothelial cells and protective effect of melatonin. When the mitochondrial membrane potential (ΔΨm) of oxygen-glucose deprivation (OGD)-treated cells was assessed using the fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol -carbocyanine iodide, we observed spontaneous changes in peroxynitrite formation. Concomitantly, western blot and confocal microscopy analyses indicated that prolonged OGD exposure initiates the release of mitochondrial HtrA2 and dramatically decreases phosphoprotein enriched in astrocytes (PED or PEA-15) protein levels. Consistently, cultured endothelial cells treated with peroxynitrite (1-50 µm) exhibited a concentration-dependent release of mitochondrial HtrA2 and concomitant PED degradation in vitro. Notably, HtrA2 activation coincided with increased nitrotyrosine immunoreactivity in microvessels of rats following microsphere embolism. Additionally, the protective effect of PED overexpression in OGD-induced apoptosis was abolished by transfection with the PED(S104A/S116A) mutant. Furthermore, the effect of melatonin, an potential antioxidant, on endothelial apoptotic cascade was examined in OGD-evoked nitrosative stress. Our data showed that the application of melatonin provided significant protection against OGD-induced peroxynitrite formation and mitochondrial HtrA2 release, accompanied with a decrease in degradation PED and x-linked inhibitor of apoptosis protein, which is associated with activation of the caspase cascade. Taken together, the protective effect of melatonin is likely mediated, in part, by inhibition of peroxynitrate-mediated nitrosative stress, which in turn relieves imbalance of mitochondrial HtrA2-PED signaling and endothelial cell death.


Subject(s)
Brain Ischemia/drug therapy , Endothelial Cells/metabolism , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Apoptosis Regulatory Proteins , Brain Ischemia/metabolism , Cell Line , Cell Survival/drug effects , Endothelial Cells/drug effects , Flow Cytometry , High-Temperature Requirement A Serine Peptidase 2 , Humans , Immunoblotting , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Melatonin , Membrane Potential, Mitochondrial , Microscopy, Confocal , Mitochondrial Proteins/genetics , Nerve Tissue Proteins/genetics , Peroxynitrous Acid/pharmacology , Phosphoproteins/genetics , RNA-Binding Proteins/genetics , Rats , Rats, Wistar , Serine Endopeptidases/genetics , Serine-Arginine Splicing Factors , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL