Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(24): 17182-17190, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38847738

ABSTRACT

ZnSeTe quantum dots (QDs) attract growing interest owing to their low threats to health and the environment. They are widely applied as emitters in displays and lighting devices. Previous findings have indicated that inorganic halides are excellent candidates for surface ligands on QDs. By incorporating inorganic halides during the synthesis process, the photoluminescence (PL) intensity and quantum yield (QY) of QDs can be significantly enhanced. However, the alteration of surface states in QDs induced by zinc halide modification and the mechanism of formation of trap-state radiative recombination processes have been less discussed. Herein, we proposed a synthesis strategy for ZnSeTe/ZnSe/ZnSeS/ZnS core/shell/shell/shell QDs modified with ZnCl2, and by comparing the morphology and elemental composition of QDs with different amounts of ZnCl2 added, we revealed the regulatory mechanism of nanocrystal growth in the presence of ZnCl2. QDs with modification of ZnCl2 exhibited broad yellow fluorescence, distinct from the intrinsic blue emission. Through spectroscopic and surface ligand analyses, we attributed this yellow emission to the intermediate state energy levels caused by the defects on the surface. Finally, we used the QDs with broad linewidth emission to fabricate a simple white-light-emitting diode (WLED). This work provided new insights into the role of inorganic ligands and the use of a single emitting material in solid-state lighting devices.

2.
Inorg Chem ; 62(6): 2877-2886, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36723932

ABSTRACT

InP quantum dots (QDs) attract growing interest in recent years, owing to their environmental advantages upon applications in display and lighting. However, compared to Cd-based QDs and Pb-based perovskites, the synthesis of InP QDs with high optical quality is relatively more difficult. Here, we established a mid-synthetic modification approach to improve the optical properties of InP-based QDs. Tris(dimethylamino)phosphine ((DMA)3P) and indium iodide were used to prepare InP QDs with a green emission (∼527 nm). By introducing zinc halides (ZnX2) during the mid-synthetic process, the photoluminescence quantum yield (PLQY) of the resulting InP/ZnSeS/ZnS core/shell/shell QDs was increased to >70%, and the full-width-at-half-maximum (FWHM) could be narrowed to ∼40 nm. Transmission electron microscopy clearly showed the improvement of the QDs particle size distribution after introducing ZnX2. It was speculated that ZnX2 was bound to the surface of QDs as a Z-type ligand, which not only passivated surface defects and suppressed the emission of defect states but also prevented Ostwald ripening. The InP cores were also activated by ZnX2, which made the growth of the ZnSeS shell more favorable. The photoluminescence properties started to be improved significantly only when the amount of ZnX2 exceeded 0.5 mmol. As the amount increased, more ZnX2 was distributed around the QDs to form a ligand layer, which prevented the shell precursor from crossing the ligand layer to the surface of the InP core, thus reducing the size of the InP/ZnSeS/ZnS QDs. This work revealed a new role of ZnX2 and found a method for InP QDs with high brightness and low FWHM by the mid-synthetic modification, which would inspire the synthesis of even better InP QDs.

SELECTION OF CITATIONS
SEARCH DETAIL