Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cancer ; 23(1): 62, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38519953

ABSTRACT

While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibody‒drug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)‒approved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , United States , Humans , Immunoconjugates/therapeutic use , United States Food and Drug Administration , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Treatment Outcome
2.
FASEB J ; 37(11): e23259, 2023 11.
Article in English | MEDLINE | ID: mdl-37855749

ABSTRACT

Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.


Subject(s)
Heart Diseases , Heart Failure , Animals , Mice , Autophagy , Fibrosis , Heart Diseases/metabolism , Heart Failure/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
3.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38198804

ABSTRACT

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Subject(s)
Cardio-Renal Syndrome , Emodin , Renal Insufficiency, Chronic , Humans , Mice , Animals , Emodin/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Apoptosis , Mice, Inbred C57BL
4.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433173

ABSTRACT

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

5.
Arch Virol ; 168(8): 221, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543543

ABSTRACT

Mpox (formerly monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), which, like smallpox, is characterised by skin rashes. While the world is currently grappling with the coronavirus disease 2019 pandemic, the appearance of MPXV has presented a global threat and raised concerns worldwide. Since May 2022, MPXV has spread rapidly in non-endemic mpox areas. As of 27 June 2023, the virus has spread to more than 112 countries and regions, with over 88,060 laboratory-confirmed cases and 147 deaths. Thus, measures to control the mpox epidemic are urgently needed. As the principal methods for identifying and monitoring mpox, laboratory detection techniques play an important role in mpox diagnosis. This review summarises the currently-used laboratory techniques for MPXV detection, discusses progress in improving these methods, and compares the benefits and limitations of various diagnostic detection methods. Currently, nucleic acid amplification tests, such as the polymerase chain reaction, are the most commonly used. Immunological methods have also been applied to diagnose the disease, which can help us discover new features of MPXV, improve diagnostic accuracy, track epidemic trends, and guide future prevention and control strategies, which are also vital for controlling mpox epidemics. This review provides a resource for the scientific community and should stimulate more research and development in alternative diagnostics to be applied to this and future public health crises.


Subject(s)
COVID-19 , Mpox (monkeypox) , Animals , COVID-19/diagnosis , COVID-19/epidemiology , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Pandemics , Polymerase Chain Reaction , Zoonoses
6.
Phytother Res ; 37(3): 834-847, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36349468

ABSTRACT

Advanced glycation end products (AGEs) have been identified to transduce fibrogenic signals via inducing the activation of their receptor (RAGE)-mediated pathway. Recently, disrupting AGE-RAGE interaction has become a promising therapeutic strategy for chronic heart failure (CHF). Endothelial-to-mesenchymal transition (EndMT) is close to the cardiac fibrosis pathological process. Our previous studies have demonstrated that knockout RAGE suppressed the autophagy-mediated EndMT, and thus alleviated cardiac fibrosis. Plantamajoside (PMS) is the major bioactive compound of Plantago Asiatica, and its activity of anti-fibrosis has been documented in many reports. However, its effect on CHF and the underlying mechanism remains elusive. Thus, we tried to elucidate the protective role of PMS in CHF from the viewpoint of the AGEs/RAGE/autophagy/EndMT axis. Herein, PMS was found to attenuate cardiac fibrosis and dysfunction, suppress EndMT, reduce autophagy levels and serum levels of AGEs, yet did not affect the expression of RAGE in CHF mice. Mechanically, PMS possibly binds to the V-domain of RAGE, which is similar to the interaction between AGEs and RAGE. Importantly, this competitive binding disturbed AGEs-induced the RAGE-autophagy-EndMT pathway in vitro. Collectively, our results indicated that PMS might exert an anti-cardiac fibrosis effect by specifically binding RAGE to suppress the AGEs-activated RAGE/autophagy/EndMT pathway.


Subject(s)
Catechols , Glycation End Products, Advanced , Animals , Mice , Autophagy , Catechols/pharmacology , Fibrosis , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products , Epithelial-Mesenchymal Transition
7.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1431-1437, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-37005830

ABSTRACT

Atherosclerosis(AS) is the key pathological basis of coronary heart disease(CHD), and lipid infiltration is a classical theory to explain the pathological mechanism of AS. The theory highlights that the occurrence and development of AS are closely related to abnormal lipid metabolism, with the essence of the pathological reaction caused by the invasion of lipids into arterial intima from plasma. Phlegm and blood stasis are physiologically homologous and subject to pathological co-existence. Phlegm-blood stasis correlation is the basic theory to explain the pathogenesis characteristics of CHD and has important guiding significance for revealing the mecha-nism of lipid infiltration of CHD. Phlegm is the pathological product of abnormal metabolism of Qi, blood, and body fluid, and a gene-ral summary of a series of abnormally expressed lipid substances. Among them, turbid phlegm invades the heart vessels, gradually accumulates, and condenses to achieve the qualitative change from "invisible pathogen" to "tangible pathogen", which corresponds to the mechanism of lipid migration and deposition in the intima of blood vessels, and is the starting factor of the disease. Blood stasis is the continuous development of phlegm, and it is a result of pathological states such as decreased blood fluidity, increased blood coagulation, and abnormal rheology. The fact that blood stasis caused by phlegm accords with the pathological process of "lipid abnormality-circulatory disturbance" and is the central link of the disease. Phlegm and blood stasis aggravate each other and lead to indissoluble cementation. The phlegm-blood stasis combination serves as common pathogen to trigger the disease, which is the inevitable outcome of the disease. Based on the phlegm-blood stasis correlation theory, the simultaneous treatment of phlegm and blood stasis is established. It is found that this therapy can simultaneously regulate blood lipid, reduce blood viscosity, and improve blood circulation, which can fundamentally cut off the biological material basis of the reciprocal transformation between phlegm and blood stasis, thus exerting a significant curative effect.


Subject(s)
Atherosclerosis , Coronary Disease , Humans , Medicine, Chinese Traditional , Mucus , Lipids
8.
J Neurochem ; 162(3): 262-275, 2022 08.
Article in English | MEDLINE | ID: mdl-35585794

ABSTRACT

Lysine acetylation is a reversible post-translational modification (PTM) involved in multiple physiological functions. Recent studies have demonstrated the involvement of protein acetylation in modulating the biology of Schwann cells (SCs) and regeneration of the peripheral nervous system (PNS). However, the mechanisms underlying these processes remain partially understood. Here, we characterized the acetylome of the mouse sciatic nerve (SN) and investigated the cellular distribution of acetylated proteins. We identified 483 acetylated proteins containing 1442 acetylation modification sites in the SN of adult C57BL/6 mice. Bioinformatics suggested that these acetylated SN proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and cytoskeleton, and highlighted the significant differences between the mouse SN and brain acetylome. Manual annotation further indicated that most acetylated proteins (> 45%) were associated with mitochondria, energy metabolism, and cytoskeleton and cell adhesion. We verified three newly discovered acetylation-modified proteins, including neurofilament light polypeptide (NEFL), neurofilament medium/high polypeptide (NFM/H), and periaxin (PRX). Immunofluorescence illustrated that the acetylated proteins, including acetylated alpha-tubulin, were mainly co-localized with S100-positive SCs. Herein, we provided a comprehensive acetylome for the mouse SN and demonstrated that acetylated proteins in the SN were predominantly located in SCs. These results will extend our understanding and promote further study of the role and mechanism of protein acetylation in SC development and PNS regeneration.


Subject(s)
Lysine , Protein Processing, Post-Translational , Acetylation , Animals , Lysine/metabolism , Mice , Mice, Inbred C57BL , Proteome/metabolism , Sciatic Nerve/metabolism
9.
Bioconjug Chem ; 33(12): 2290-2298, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36346913

ABSTRACT

Heparanase (HPSE) is an endo-ß-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.


Subject(s)
Extracellular Matrix , Glucuronidase , Pharmaceutical Preparations , Molecular Docking Simulation , Extracellular Matrix/metabolism , Glucuronidase/metabolism
10.
Surg Endosc ; 36(5): 3160-3168, 2022 05.
Article in English | MEDLINE | ID: mdl-34231066

ABSTRACT

BACKGROUND: Artificial intelligence and computer vision have revolutionized laparoscopic surgical video analysis. However, there is no multi-center study focused on deep learning-based laparoscopic cholecystectomy phases recognizing. This work aims to apply artificial intelligence in recognizing and analyzing phases in laparoscopic cholecystectomy videos from multiple centers. METHODS: This observational cohort-study included 163 laparoscopic cholecystectomy videos collected from four medical centers. Videos were labeled by surgeons and a deep-learning model was developed based on 90 videos. Thereafter, the performance of the model was tested in additional ten videos by comparing it with the annotated ground truth of the surgeon. Deep-learning models were trained to identify laparoscopic cholecystectomy phases. The performance of models was measured using precision, recall, F1 score, and overall accuracy. With a high overall accuracy of the model, additional 63 videos as an analysis set were analyzed by the model to identify different phases. RESULTS: Mean concordance correlation coefficient for annotations of the surgeons across all operative phases was 92.38%. Also, the overall phase recognition accuracy of laparoscopic cholecystectomy by the model was 91.05%. In the analysis set, there was an average surgery time of 2195 ± 896 s, with a huge individual variance of different surgical phases. Notably, laparoscopic cholecystectomy in acute cholecystitis cases had prolonged overall durations, and the surgeon would spend more time in mobilizing the hepatocystic triangle phase. CONCLUSION: A deep-learning model based on multiple centers data can identify phases of laparoscopic cholecystectomy with a high degree of accuracy. With continued refinements, artificial intelligence could be utilized in huge data surgery analysis to achieve clinically relevant future applications.


Subject(s)
Artificial Intelligence , Cholecystectomy, Laparoscopic , Humans
11.
Surg Endosc ; 36(8): 6113-6121, 2022 08.
Article in English | MEDLINE | ID: mdl-35737138

ABSTRACT

BACKGROUND: Due to varied surgical skills and the lack of an efficient rating system, we developed Surgesture based on elementary functional surgical gestures performed by surgeons, which could serve as objective metrics to evaluate surgical performance in laparoscopic cholecystectomy (LC). METHODS: We defined 14 LC basic Surgestures. Four surgeons annotated Surgestures among LC videos performed by experts and novices. The counts, durations, average action time, and dissection/exposure ratio (D/E ratio) of LC Surgestures were compared. The phase of mobilizing hepatocystic triangle (MHT) was extracted for skill assessment by three professors using a modified Global Operative Assessment of Laparoscopic Skills (mGOALS). RESULTS: The novice operation time was significantly longer than the expert operation time (58.12 ± 19.23 min vs. 26.66 ± 8.00 min, P < 0.001), particularly during MHT phase. Novices had significantly more Surgestures than experts in both hands (P < 0.05). The left hand and inefficient Surgesture of novices were dramatically more than those of experts (P < 0.05). The experts demonstrated a significantly higher D/E ratio of duration than novices (0.79 ± 0.37 vs. 2.84 ± 1.98, P < 0.001). The counts and time pattern map of LC Surgestures during MHT demonstrated that novices tended to complete LC with more types of Surgestures and spent more time exposing the surgical scene. The performance metrics of LC Surgesture had significant but weak associations with each aspect of mGOALS. CONCLUSION: The newly constructed Surgestures could serve as accessible and quantifiable metrics for demonstrating the operative pattern and distinguishing surgeons with various skills. The association between Surgestures and Global Rating Scale laid the foundation for establishing a bridge to automated objective surgical skill evaluation.


Subject(s)
Cholecystectomy, Laparoscopic , Laparoscopy , Surgeons , Clinical Competence , Humans , Laparoscopy/methods , Operative Time
12.
Eur J Nucl Med Mol Imaging ; 48(11): 3386-3399, 2021 10.
Article in English | MEDLINE | ID: mdl-33712870

ABSTRACT

Positron emission tomography (PET) imaging of apoptosis can noninvasively detect cell death in vivo and assist in monitoring tumor response to treatment in patients. While extensive efforts have been devoted to addressing this important need, no apoptosis PET imaging agents have yet been approved for clinical use. This study reports an improved 18F-labeled caspase-sensitive nanoaggregation tracer ([18F]-C-SNAT4) for PET imaging of tumor response to chemo- and immunotherapies in preclinical mouse models. METHODS: We rationally designed and synthesized a new PET tracer [18F]-C-SNAT4 to detect cell death both in vitro and in vivo. In vitro radiotracer uptake studies were performed on drug-sensitive and -resistant NSCLC cell lines (NCI-H460 and NCI-H1299, respectively) treated with cisplatin at different doses. In vivo therapy response monitoring by [18F]-C-SNAT4 PET imaging was evaluated with two treatment modalities-chemotherapy and immunotherapy in two tumor xenografts in mice. Radiotracer uptake in the tumors was validated ex vivo using γ-counting and cleaved caspase-3 immunofluorescence. RESULTS: This [18F]-C-SNAT4 PET tracer was facilely synthesized and displayed improved serum stability profiles. [18F]-C-SNAT4 cellular update was elevated in NCI-H460 cells in a time- and dose-dependent manner, which correlated well with cell death. A significant increase in [18F]-C-SNAT4 uptake was measured in NCI-H460 tumor xenografts in mice. In contrast, a rapid clearance of [18F]-C-SNAT4 was observed in drug-resistant NCI-H1299 in vitro and in tumor xenografts. Moreover, in BALB/C mice bearing murine colon cancer CT26 tumor xenografts receiving checkpoint inhibitors, [18F]-C-SNAT4 showed its ability for monitoring immunotherapy-induced apoptosis and reporting treatment-responding mice from non-responding. CONCLUSION: The uptake of [18F]-C-SNAT4 in tumors received chemotherapy and immunotherapy is positively correlated with the tumor apoptotic level and the treatment efficacy. [18F]-C-SNAT4 PET imaging can monitor tumor response to two different treatment modalities and predict the therapeutic efficacy in preclinical mouse models.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Caspase 3 , Cell Line, Tumor , Humans , Immunotherapy , Mice , Mice, Inbred BALB C , Positron-Emission Tomography
13.
J Cell Physiol ; 235(3): 2655-2667, 2020 03.
Article in English | MEDLINE | ID: mdl-31584200

ABSTRACT

Liver regeneration involves not only hepatocyte replication but progenitor aggregation and scarring. Partial hepatectomy (PH), an established model for liver regeneration, reactivates transforming growth factor-ß (TGF-ß) signaling. Hepatic stellate cells (HSCs) are primarily responding cells for TGF-ß and resident in stem cell niche. In the current study, PH mice were treated with SB-431542, an inhibitor of TGF-ß Type I receptor, aiming to address the role of TGF-ß signaling on the fate determination of HSCs during liver regeneration. After PH, control mice exhibited HSCs activation, progenitor cells accumulation, and a fraction of HSCs acquired the phenotype of hepatocyte or cholangiocyte. Blocking TGF-ß signaling delayed proliferation, impaired progenitor response, and scarring repair. In SB-431542 group, merely no HSCs were found coexpressed progenitor makers, such as SOX9 and AFP. Inhibition of TGF-ß pathway disturbed the epithelial-mesenchymal transitions and diminished the nuclear accumulation of ß-catenin as well as the expression of cytochrome P450 2E1 in HSC during liver regeneration. We identify a key role of TGF-ß signaling on promoting HSC transition, which subsequently becomes progenitor for generating liver epithelial cells after PH. This process might interact with an acknowledged stem cell function signaling, Wnt/ß-catenin.


Subject(s)
Hepatic Stellate Cells/cytology , Hepatocytes/cytology , Liver Regeneration/physiology , Stem Cells/cytology , Transforming Growth Factor beta1/metabolism , Animals , Benzamides/pharmacology , Cell Proliferation/drug effects , Cytochrome P-450 CYP2E1/biosynthesis , Dioxoles/pharmacology , Epithelial-Mesenchymal Transition , Hepatectomy , Male , Mice , Mice, Inbred C57BL , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , SOX9 Transcription Factor/metabolism , Signal Transduction/physiology , alpha-Fetoproteins/metabolism , beta Catenin/metabolism
14.
J Am Chem Soc ; 142(36): 15575-15584, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32804495

ABSTRACT

"Smart" biomaterials that are responsive to physiological or biochemical stimuli have found many biomedical applications for tissue engineering, therapeutics, and molecular imaging. In this work, we describe in situ polymerization of activatable biorthogonal small molecules in response to a reducing environment change in vivo. We designed a carbohydrate linker- and cyanobenzothiazole-cysteine condensation reaction-based small molecule scaffold that can undergo rapid condensation reaction upon physiochemical changes (such as a reducing environment) to form polymers (pseudopolysaccharide). The fluorescent and photoacoustic properties of a fluorophore-tagged condensation scaffold before and after the transformation have been examined with a dual-modality optical imaging method. These results confirmed the in situ polymerization of this probe after both local and systemic administration in living mice.


Subject(s)
Benzothiazoles/chemistry , Carbohydrates/chemistry , Cysteine/chemistry , Fluorescent Dyes/chemistry , Nitriles/chemistry , Optical Imaging , Polymerization , Animals , Cell Line, Tumor , Female , Fluorescent Dyes/chemical synthesis , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Oxidation-Reduction
15.
Angew Chem Int Ed Engl ; 59(20): 7864-7870, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32056345

ABSTRACT

The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions-the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO)-to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe (TCO-C-SNAT4) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent in situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.


Subject(s)
Molecular Imaging/methods , Nanoparticles/chemistry , Peptide Hydrolases/metabolism , Cyclization , Cyclooctanes/chemistry , Nitriles/chemistry , Sulfhydryl Compounds/chemistry
16.
Angew Chem Int Ed Engl ; 59(8): 3272-3279, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31828913

ABSTRACT

The condensation reaction between 6-hydroxy-2-cyanobenzothiazole (CBT) and cysteine has been shown for various applications such as site-specific protein labelling and in vivo cancer imaging. This report further expands the substrate scope of this reaction by varying the substituents on aromatic nitriles and amino thiols and testing their reactivity and ability to form nanoparticles for cell imaging. The structure-activity relationship study leads to the identification of the minimum structural requirement for the macrocyclization and assembly process in forming nanoparticles. One of the scaffolds made of 2-pyrimidinecarbonitrile and cysteine joined by a benzyl linker was applied to design fluorescent probes for imaging caspase-3/7 and ß-galactosidase activity in live cells. These results demonstrate the generality of this system for imaging hydrolytic enzymes.


Subject(s)
Glycoside Hydrolases/chemistry , Nanoparticles/chemistry , Nitriles/chemistry , Peptide Hydrolases/chemistry , Sulfhydryl Compounds/chemistry , Humans
17.
J Mol Cell Cardiol ; 133: 67-74, 2019 08.
Article in English | MEDLINE | ID: mdl-31150734

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) causes loss of cardiomyocytes via oxidative stress-induced cardiomyocyte apoptosis. miR322, orthologous to human miR-424, was identified as an ischemia-induced angiogenic miRNA, but its cellular source and function in the setting of acute MI/R remains largely unknown. Using LacZ-tagged miR322 cluster reporter mice, we observed that vascular endothelial cells are the major cellular source of the miR322 cluster in adult hearts. Moreover, miR322 levels were significantly reduced in the heart at 24 h after MI/R injury. Intramyocardial injection of mimic-miR322 significantly diminished cardiac apoptosis (as determined by expression levels of active caspase 3 by Western blot analysis and immunostaining for TUNEL) and reduced infarct size by about 40%, in association with reduced FBXW7 and increased active Notch 1 levels in the ischemic hearts. FBXW7, which is an ubiquitin ligase that is crucial for activated Notch1 turnover, was identified as a direct target of miR322 via FBXW7 3'UTR reporter assay. Co-injection of FBXW7 plasmid with mimic-miR322 in ischemic hearts abolished the effect of mimic-miR322 to reduce apoptosis and infarct size in MI/R hearts. These data identify FBXW7 as a direct target of miR322 and suggest that miR322 could have potential therapeutic application for cardioprotection against ischemia/reperfusion-induced injury.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Receptors, Notch/metabolism , Signal Transduction , 3' Untranslated Regions , Animals , Cell Line , Disease Models, Animal , F-Box-WD Repeat-Containing Protein 7/genetics , Fluorescent Antibody Technique , Mice , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Oxidative Stress , RNA Interference
18.
Bioconjug Chem ; 30(5): 1331-1342, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30973715

ABSTRACT

Poly(ADP ribose) polymerase (PARP) enzymes generate poly(ADP ribose) post-translational modifications on target proteins for an array of functions centering on DNA and cell stress. PARP isoforms 1 and 2 are critically charged with the surveillance of DNA integrity and are the first line guardians of the genome against DNA breaks. Here we present a novel probe ([18F]-SuPAR) for noninvasive imaging of PARP-1/2 activity using positron emission tomography (PET). [18F]-SuPAR is a radiofluorinated nicotinamide adenine dinucleotide (NAD) analog that can be recognized by PARP-1/2 and incorporated into the long branched polymers of poly(ADP ribose) (PAR). The measurement of PARP-1/2 activity was supported by a reduction of radiotracer uptake in vivo following PARP-1/2 inhibition with talazoparib treatment, a potent PARP inhibitor recently approved by FDA for treatment of breast cancer, as well as ex vivo colocalization of radiotracer analog and poly(ADP ribose). With [18F]-SuPAR, we were able to map the dose- and time-dependent activation of PARP-1/2 following radiation therapy in breast and cervical cancer xenograft mouse models. Tumor response to therapy was determined by [18F]-SuPAR PET within 8 h of administration of a single dose of radiation equivalent to one round of stereotactic ablative radiotherapy.


Subject(s)
DNA Damage , Fluorine Radioisotopes/administration & dosage , Poly(ADP-ribose) Polymerases/metabolism , Animals , Breast Neoplasms/diagnostic imaging , Female , Humans , NAD/metabolism , Positron-Emission Tomography , Receptors, Urokinase Plasminogen Activator/metabolism , Substrate Specificity , Uterine Cervical Neoplasms/diagnostic imaging , Xenograft Model Antitumor Assays
20.
Pharmacol Res ; 147: 104251, 2019 09.
Article in English | MEDLINE | ID: mdl-31233804

ABSTRACT

Heart failure (HF) is a complex pathology for which single-agent therapy cannot provide comprehensive efficacy. Therefore, effective combination therapies for HF are increasingly emphasized. Multiple-component drugs derived from Chinese herbal formulae provide efficacy and safety when administered to patients with HF. Nuanxinkang (NXK) is a simplified Chinese herbal formula which has been widely applied in HF for decades. It exhibits comprehensive cardiac protective effects in HF patients as an adjuvant therapy, including improving heart function and quality-of-life, reducing inflammation, and regulating neurohormones. Nevertheless, the bioactive ingredients and mechanisms of action of NXK are unknown, which hinders its further application. Here, we examined the therapeutic efficacy of NXK in a mouse model of HF. Using transcriptome analysis and drug similarity analysis we found that NXK inhibits apoptosis and inflammation, while improving cardiac contraction and reversing myocardial fibrosis. In addition, we detected 21 bioactive species in NXK using UHPLC-MS analysis. Based on these data, we performed network pharmacology analysis to investigate ingredient-target-pathway interactions. We further confirmed 13 genes as potential targets, and assessed the effects of NXK on the AKT to validate the anti-apoptotic role of NXK both in vivo and in vitro. Thus, our work has identified a simplified herbal formula with efficacy against HF by exploring its constituents and mechanism of action, providing evidence for an innovative treatment strategy and novel therapeutic targets for HF.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Heart Failure/drug therapy , Ilex , Panax , Animals , Cell Line , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Heart Failure/genetics , Heart Failure/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL