ABSTRACT
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
ABSTRACT
PD-1 and PD-L1 act to restrict T cell responses in cancer and contribute to self-tolerance. Consistent with this role, PD-1 checkpoint inhibitors have been associated with immune-related adverse events (irAEs), immune toxicities thought to be autoimmune in origin. Analyses of dermatological irAEs have identified an association with improved overall survival (OS) following anti-PD-(L)1 therapy, but the factors that contribute to this relationship are poorly understood. We collected germline whole-genome sequencing data from IMvigor211, a recent phase 3 randomized controlled trial comparing atezolizumab (anti-PD-L1) monotherapy to chemotherapy in bladder cancer. We found that high vitiligo, high psoriasis, and low atopic dermatitis polygenic risk scores (PRSs) were associated with longer OS under anti-PD-L1 monotherapy as compared to chemotherapy, reflecting the Th17 polarization of these diseases. PRSs were not correlated with tumor mutation burden, PD-L1 immunohistochemistry, nor T-effector gene signatures. Shared genetic factors impact risk for dermatological autoimmunity and anti-PD-L1 monotherapy in bladder cancer.
Subject(s)
Skin/immunology , Urinary Bladder Neoplasms/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , Autoimmunity , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cohort Studies , Humans , Multifactorial Inheritance , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Skin/drug effects , Th17 Cells/immunology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/geneticsABSTRACT
Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti-PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.
Subject(s)
Genes, Neoplasm , Neoplasms/genetics , Neoplasms/immunology , Polymorphism, Genetic , Aminopeptidases/genetics , Female , Gene Expression Regulation, Neoplastic , Germ-Line Mutation , Humans , Immunity, Cellular/genetics , Immunotherapy , Inducible T-Cell Co-Stimulator Ligand/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Neoplasms/therapy , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapyABSTRACT
OBJECTIVES: Skin fibrosis mediated by activated dermal fibroblasts is a hallmark of systemic sclerosis (SSc), especially in the subset of patients with diffuse disease. Transforming growth factor-beta (TGFß) and interleukin-6 (IL-6) are key candidate mediators in SSc. Our aim was to elucidate the specific effect of IL-6 pathway blockade on the biology of SSc fibroblasts in vivo by using samples from a unique clinical experiment-the faSScinate study-in which patients with SSc were treated for 24 weeks with tocilizumab (TCZ), an IL-6 receptor-α inhibitor. METHODS: We analysed the molecular, functional and genomic characteristics of explant fibroblasts cultured from matched skin biopsy samples collected at baseline and at week 24 from 12 patients receiving placebo (n=6) or TCZ (n=6) and compared these with matched healthy control fibroblast strains. RESULTS: The hallmark functional and molecular-activated phenotype was defined in SSc samples and was stable over 24 weeks in placebo-treated cases. RNA sequencing analysis robustly defined key dysregulated pathways likely to drive SSc fibroblast activation in vivo. Treatment with TCZ for 24 weeks profoundly altered the biological characteristics of explant dermal fibroblasts by normalising functional properties and reversing gene expression profiles dominated by TGFß-regulated genes and molecular pathways. CONCLUSIONS: We demonstrated the exceptional value of using explant dermal fibroblast cultures from a well-designed trial in SSc to provide a molecular framework linking IL-6 to key profibrotic pathways. The profound impact of IL-6R blockade on the activated fibroblast phenotype highlights the potential of IL-6 as a therapeutic target in SSc and other fibrotic diseases. TRIAL REGISTRATION NUMBER: NCT01532869; Post-results.
Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Fibroblasts/drug effects , Interleukin-6/immunology , Scleroderma, Systemic/drug therapy , Skin/pathology , Transforming Growth Factor beta/physiology , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Biopsy , Cells, Cultured , Double-Blind Method , Female , Fibroblasts/immunology , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation/immunology , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Molecular Targeted Therapy/methods , Receptors, Interleukin-6/antagonists & inhibitors , Scleroderma, Systemic/genetics , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Skin/immunologyABSTRACT
Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness.
Subject(s)
Antibodies, Neutralizing/immunology , Drug Resistance, Microbial/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immune Evasion/immunology , Influenza A virus/immunology , Animals , Antibodies, Viral/immunology , Blotting, Western , Dogs , Flow Cytometry , Humans , Immunohistochemistry , Influenza, Human/immunology , Madin Darby Canine Kidney Cells , Mice , Neutralization Tests , Orthomyxoviridae Infections/immunology , Polymerase Chain ReactionABSTRACT
MHAA4549A, a human monoclonal antibody targeting the hemagglutinin stalk region of influenza A virus (IAV), is being developed as a therapeutic for patients hospitalized with severe IAV infection. The safety and efficacy of MHAA4549A were assessed in a randomized, double-blind, placebo-controlled, dose-ranging study in a human IAV challenge model. One hundred healthy volunteers were inoculated with A/Wisconsin/67/2005 (H3N2) IAV and, 24 to 36 h later, administered a single intravenous dose of either placebo, MHAA4549A (400, 1,200, or 3,600 mg), or a standard oral dose of oseltamivir. Subjects were assessed for safety, pharmacokinetics (PK), and immunogenicity. The intent-to-treat-infected (ITTI) population was assessed for changes in viral load, influenza symptoms, and inflammatory biomarkers. MHAA4549A was well tolerated in all IAV challenge subjects. The 3,600-mg dose of MHAA4549A significantly reduced the viral burden relative to that of the placebo as determined by the area under the curve (AUC) of nasopharyngeal virus infection, quantified using quantitative PCR (98%) and 50% tissue culture infective dose (TCID50) (100%) assays. Peak viral load, duration of viral shedding, influenza symptom scores, mucus weight, and inflammatory biomarkers were also reduced. Serum PK was linear with a half-life of â¼23 days. No MHAA4549A-treated subjects developed anti-drug antibodies. In conclusion, MHAA4549A was well tolerated and demonstrated statistically significant and substantial antiviral activity in an IAV challenge model. (This study has been registered at ClinicalTrials.gov under identifier NCT01980966.).
Subject(s)
Antibodies, Monoclonal/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Influenza, Human/drug therapy , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacokinetics , Drug Resistance, Viral/drug effects , Healthy Volunteers , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/virology , Male , Nasopharyngeal Diseases/virology , Treatment Outcome , Viral Load , Virus Shedding , Young AdultABSTRACT
BACKGROUND: Systemic sclerosis is a rare disabling autoimmune disease with few treatment options. The efficacy and safety of tocilizumab, an interleukin 6 receptor-α inhibitor, was assessed in the faSScinate phase 2 trial in patients with systemic sclerosis. METHODS: We did this double-blind, placebo-controlled study at 35 hospitals in Canada, France, Germany, the UK, and the USA. We enrolled adults with progressive systemic sclerosis of 5 or fewer years' duration from first non-Raynaud's sign or symptom. Patients were randomly assigned (1:1) to weekly subcutaneous tocilizumab 162 mg or placebo. The primary endpoint was the difference in mean change from baseline in modified Rodnan skin score at 24 weeks. This study is registered with ClinicalTrials.gov, number NCT01532869. FINDINGS: We enrolled 87 patients: 43 assigned to tocilizumab and 44 assigned to placebo. The least squares mean change in modified Rodnan skin score at 24 weeks was -3·92 in the tocilizumab group and -1·22 in the placebo group (difference -2·70, 95% CI -5·85 to 0·45; p=0·0915). The least squares mean change at 48 weeks was -6·33 in the tocilizumab group and -2·77 in the placebo group (treatment difference -3·55, 95% CI -7·23 to 0·12; p=0·0579). In one of several exploratory analyses, fewer patients in the tocilizumab group than in the placebo group had a decline in percent predicted forced vital capacity at 48 weeks (p=0·0373). However, we detected no significant difference in disability, fatigue, itching, or patient or clinician global disease severity. 42 (98%) of 43 patients in the tocilizumab group versus 40 (91%) of 44 in the placebo group had adverse events. 14 (33%) versus 15 (34%) had serious adverse events. Serious infections were more common in the tocilizumab group (seven [16%] of 43 patients) than in the placebo group (two [5%] of 44). One patient died in relation to tocilizumab treatment. INTERPRETATION: Tocilizumab was not associated with a significant reduction in skin thickening. However, the difference was greater in the tocilizumab group than in the placebo group and we found some evidence of less decline in forced vital capacity. The efficacy and safety of tocilizumab should be investigated in a phase 3 trial before definitive conclusions can be made about its risks and benefits. FUNDING: F Hoffmann-La Roche, Genentech.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Scleroderma, Systemic/drug therapy , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/metabolism , Canada , Double-Blind Method , Europe , Female , Humans , Injections, Subcutaneous , Interleukin-6/physiology , Male , Middle Aged , Scleroderma, Systemic/complications , Scleroderma, Systemic/metabolism , Treatment Outcome , United Kingdom , Vital CapacityABSTRACT
BACKGROUND: High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. RESULTS: We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). CONCLUSIONS: Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , Viruses/genetics , Benchmarking , Genome, Viral/genetics , Polymerase Chain ReactionABSTRACT
The cerebellum may monitor motor commands and through internal feedback correct for anticipated errors. Saccades provide a test of this idea because these movements are completed too quickly for sensory feedback to be useful. Earlier, we reported that motor commands that accelerate the eyes toward a constant amplitude target showed variability. Here, we demonstrate that this variability is not random noise, but is due to the cognitive state of the subject. Healthy people showed within-saccade compensation for this variability with commands that arrived later in the same saccade. However, in people with cerebellar damage, the same variability resulted in dysmetria. This ability to correct for variability in the motor commands that initiated a saccade was a predictor of each subject's ability to learn from endpoint errors. In a paradigm in which a target on the horizontal meridian jumped vertically during the saccade (resulting in an endpoint error), the adaptive response exhibited two timescales: a fast timescale that learned quickly from endpoint error but had poor retention, and a slow timescale that learned slowly but had strong retention. With cortical cerebellar damage, the fast timescale of adaptation was effectively absent, but the slow timescale was less impaired. Therefore, the cerebellum corrects for variability in the motor commands that initiate saccades within the same movement via an adaptive response that not only exhibits strong sensitivity to previous endpoint errors, but also rapid forgetting.
Subject(s)
Adaptation, Physiological/physiology , Cerebellum/physiology , Psychomotor Performance/physiology , Saccades/physiology , Adult , Aged , Analysis of Variance , Biofeedback, Psychology , Biomechanical Phenomena , Calcium Channels/genetics , Case-Control Studies , Cerebellar Diseases/genetics , Cerebellar Diseases/pathology , Cerebellar Diseases/physiopathology , Eye Movements/physiology , Female , Humans , Male , Middle Aged , Noise , Reaction Time/physiology , Statistics as Topic , Task Performance and Analysis , Time FactorsABSTRACT
Ballistic movements like saccades require the brain to generate motor commands without the benefit of sensory feedback. Despite this, saccades are remarkably accurate. Theory suggests that this accuracy arises because the brain relies on an internal forward model that monitors the motor commands, predicts their sensory consequences, and corrects eye trajectory midflight. If control of saccades relies on a forward model, then the forward model should adapt whenever its predictions fail to match sensory feedback at the end of the movement. Using optimal feedback control theory, we predicted how this adaptation should alter saccade trajectories. We trained subjects on a paradigm in which the horizontal target jumped vertically during the saccade. With training, the final position of the saccade moved toward the second target. However, saccades became increasingly curved, i.e., suboptimal, as oculomotor commands were corrected on-line to steer the eye toward the second target. The adaptive response had two components: (1) the motor commands that initiated the saccades changed slowly, aiming the saccade closer to the jumped target. The adaptation of these earliest motor commands displayed little forgetting during the rest periods. (2) Late in saccade trajectory, another adaptive response steered it still closer to the jumped target, producing curvature. Adaptation of these late motor commands showed near-complete forgetting during the rest periods. The two components adapted at different timescales, with the late-acting component displaying much faster rates. It appears that in controlling saccades, the brain relies on an internal feedback that has the characteristics of a fast-adapting forward model.
Subject(s)
Adaptation, Physiological/physiology , Feedback/physiology , Saccades/physiology , Humans , Photic Stimulation/methodsABSTRACT
Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells.
Subject(s)
Cell Membrane/metabolism , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , 3T3 Cells , Animals , Endoplasmic Reticulum/metabolism , Female , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/geneticsABSTRACT
Profound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens.
Subject(s)
Antigens, Neoplasm/immunology , Computational Biology/methods , DNA Transposable Elements/immunology , Neoplasms/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Line, Tumor , DNA Methylation/genetics , DNA Methylation/immunology , DNA Transposable Elements/genetics , Gene Expression/immunology , Gene Expression Profiling , Humans , Immunotherapy/methods , Neoplasms/genetics , Neoplasms/therapy , Sequence Analysis, RNAABSTRACT
OBJECTIVE: At present, there are no clinical or laboratory measures that accurately forecast the progression of skin fibrosis and organ involvement in patients with systemic sclerosis (SSc). The goal of this study was to identify skin biomarkers that could be prognostic for the progression of skin fibrosis in patients with early diffuse cutaneous SSc (dcSSc). METHODS: We analyzed clinical data and gene expression in skin biopsy samples from 38 placebo-treated patients, part of the Roche Safety and Efficacy of Subcutaneous Tocilizumab in Adults with Systemic Sclerosis (FASSCINATE) phase II study of tocilizumab in SSc. RNA samples were analyzed using nCounter. A trajectory model based on a modified Rodnan skin thickness score was used to describe 3 skin disease trajectories over time. We examined the association of skin gene expression with skin score trajectory groups, by chi-square test. Logistic regression was used to examine the prognostic power of each gene identified. RESULTS: We found that placebo-treated patients with high expression of messenger RNA for CD14, SERPINE1, IL13RA1, CTGF, and OSMR at baseline were more likely to have progressive skin score trajectories. We also found that those genes were prognostic for the risk of skin progression and that IL13RA1, OSMR, and SERPINE1 performed the best. CONCLUSION: Skin gene expression of biomarkers associated with macrophages (CD14, IL13RA1) and transforming growth factor ß activation (SERPINE1, CTGF, OSMR) are prognostic for progressive skin disease in patients with dcSSc. These biomarkers may provide guidance in decision-making about which patients should be considered for aggressive therapies and/or for clinical trials.
Subject(s)
Gene Expression , Macrophages/metabolism , RNA, Messenger/metabolism , Scleroderma, Diffuse/genetics , Skin/cytology , Adult , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Clinical Trials, Phase II as Topic , Connective Tissue Growth Factor/genetics , Disease Progression , Double-Blind Method , Female , Fibrosis , Genetic Markers/genetics , Humans , Interleukin-13 Receptor alpha1 Subunit/genetics , Lipopolysaccharide Receptors/genetics , Male , Middle Aged , Oncostatin M Receptor beta Subunit/genetics , Plasminogen Activator Inhibitor 1/genetics , Prognosis , Randomized Controlled Trials as Topic , Scleroderma, Diffuse/drug therapy , Scleroderma, Diffuse/pathology , Severity of Illness Index , Skin/pathology , Young AdultABSTRACT
In vivo serial passage of non-pathogenic viruses has been shown to lead to increased viral virulence, and although the precise mechanism(s) are not clear, it is known that both host and viral factors are associated with increased pathogenicity. Under- or overnutrition leads to a decreased or dysregulated immune response and can increase viral mutant spectrum diversity and virulence. The objective of this study was to identify the role of viral mutant spectra dynamics and host immunocompetence in the development of pathogenicity during in vivo passage. Because the nutritional status of the host has been shown to affect the development of viral virulence, the diet of animal model reflected two extremes of diets which exist in the global population, malnutrition and obesity. Sendai virus was serially passaged in groups of mice with differing nutritional status followed by transmission of the passaged virus to a second host species, guinea pigs. Viral population dynamics were characterized using deep sequence analysis and computational modeling. Histopathology, viral titer and cytokine assays were used to characterize viral virulence. Viral virulence increased with passage and the virulent phenotype persisted upon passage to a second host species. Additionally, nutritional status of mice during passage influenced the phenotype. Sequencing revealed the presence of several non-synonymous changes in the consensus sequence associated with passage, a majority of which occurred in the hemagglutinin-neuraminidase and polymerase genes, as well as the presence of persistent high frequency variants in the viral population. In particular, an N1124D change in the consensus sequences of the polymerase gene was detected by passage 10 in a majority of the animals. In vivo comparison of an 1124D plaque isolate to a clone with 1124N genotype indicated that 1124D was associated with increased virulence.
ABSTRACT
One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST) events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350) in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009) and geographic location (northern vs. southern). A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population) in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.
Subject(s)
Genetic Variation , Rabies virus/classification , Rabies virus/genetics , Rabies/veterinary , Animals , Antigens, Viral/genetics , California/epidemiology , Cluster Analysis , Disease Outbreaks , Evolution, Molecular , Foxes , Glycoproteins/genetics , High-Throughput Nucleotide Sequencing , Mephitidae , Molecular Epidemiology , Mutation, Missense , Phylogeny , Rabies/epidemiology , Rabies/transmission , Rabies/virology , Rabies virus/isolation & purification , Sequence Homology , Viral Envelope Proteins/geneticsABSTRACT
The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.