Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600242

ABSTRACT

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Subject(s)
Centromere Protein A , Chromosomal Instability , Histones , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , HeLa Cells , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolism
2.
Cell ; 139(3): 560-72, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19879842

ABSTRACT

DYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the transition. MBK-2 is activated during oocyte maturation by CDK-1-dependent phosphorylation of serine 68, a residue outside of the kinase domain required for full activity in vivo. The pseudotyrosine phosphatases EGG-4 and EGG-5 sequester activated MBK-2 until the meiotic divisions by binding to the YTY motif and inhibiting MBK-2's kinase activity directly, using a mixed-inhibition mechanism that does not involve tyrosine dephosphorylation. Our findings link cell-cycle progression to MBK-2/DYRK activation and the oocyte-to-embryo transition.


Subject(s)
CDC2 Protein Kinase/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Protein-Tyrosine Kinases/metabolism , Animals , Caenorhabditis elegans/metabolism , Embryo, Nonmammalian/metabolism , Humans , Oocytes/metabolism
3.
J Biol Chem ; 293(35): 13750-13765, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29945974

ABSTRACT

The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nucleosomes/metabolism , Repressor Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nucleosomes/drug effects , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry
4.
J Nat Prod ; 78(10): 2411-22, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26465675

ABSTRACT

Methods to identify the bioactive diversity within natural product extracts (NPEs) continue to evolve. NPEs constitute complex mixtures of chemical substances varying in structure, composition, and abundance. NPEs can therefore be challenging to evaluate efficiently with high-throughput screening approaches designed to test pure substances. Here we facilitate the rapid identification and prioritization of antimalarial NPEs using a pharmacologically driven, quantitative high-throughput-screening (qHTS) paradigm. In qHTS each NPE is tested across a concentration range from which sigmoidal response, efficacy, and apparent EC50s can be used to rank order NPEs for subsequent organism reculture, extraction, and fractionation. Using an NPE library derived from diverse marine microorganisms we observed potent antimalarial activity from two Streptomyces sp. extracts identified from thousands tested using qHTS. Seven compounds were isolated from two phylogenetically related Streptomyces species: Streptomyces ballenaensis collected from Costa Rica and Streptomyces bangulaensis collected from Papua New Guinea. Among them we identified actinoramides A and B, belonging to the unusually elaborated nonproteinogenic amino-acid-containing tetrapeptide series of natural products. In addition, we characterized a series of new compounds, including an artifact, 25-epi-actinoramide A, and actinoramides D, E, and F, which are closely related biosynthetic congeners of the previously reported metabolites.


Subject(s)
Antimalarials/isolation & purification , Antimalarials/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Oligopeptides/isolation & purification , Oligopeptides/pharmacology , Streptomyces/chemistry , Antimalarials/chemistry , Biological Products/chemistry , Costa Rica , Geologic Sediments/chemistry , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/chemistry , Papua New Guinea , Phylogeny , Plasmodium falciparum/drug effects , Streptomyces/genetics
5.
Sci Transl Med ; 15(701): eadd7872, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343085

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPis) have changed the treatment paradigm in breast cancer gene (BRCA)-mutant high-grade serous ovarian carcinoma (HGSC). However, most patients eventually develop resistance to PARPis, highlighting an unmet need for improved therapeutic strategies. Using high-throughput drug screens, we identified ataxia telangiectasia and rad3-related protein/checkpoint kinase 1 (CHK1) pathway inhibitors as cytotoxic and further validated the activity of the CHK1 inhibitor (CHK1i) prexasertib in PARPi-sensitive and -resistant BRCA-mutant HGSC cells and xenograft mouse models. CHK1i monotherapy induced DNA damage, apoptosis, and tumor size reduction. We then conducted a phase 2 study (NCT02203513) of prexasertib in patients with BRCA-mutant HGSC. The treatment was well tolerated but yielded an objective response rate of 6% (1 of 17; one partial response) in patients with previous PARPi treatment. Exploratory biomarker analyses revealed that replication stress and fork stabilization were associated with clinical benefit to CHK1i. In particular, overexpression of Bloom syndrome RecQ helicase (BLM) and cyclin E1 (CCNE1) overexpression or copy number gain/amplification were seen in patients who derived durable benefit from CHK1i. BRCA reversion mutation in previously PARPi-treated BRCA-mutant patients was not associated with resistance to CHK1i. Our findings suggest that replication fork-related genes should be further evaluated as biomarkers for CHK1i sensitivity in patients with BRCA-mutant HGSC.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents/therapeutic use , Biomarkers , BRCA1 Protein/genetics , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
6.
ACS Pharmacol Transl Sci ; 4(4): 1422-1436, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34423274

ABSTRACT

Charcot-Marie-Tooth 1A (CMT1A) is the most common form of hereditary peripheral neuropathies, characterized by genetic duplication of the critical myelin gene Peripheral Myelin Protein 22 (PMP22). PMP22 overexpression results in abnormal Schwann cell differentiation, leading to axonal loss and muscle wasting. Since regulation of PMP22 expression is a major target of therapeutic discovery for CMT1A, we sought to establish unbiased approaches that allow the identification of therapeutic agents for this disease. Using genome editing, we generated a coincidence reporter assay that accurately monitors Pmp22 transcript levels in the S16 rat Schwann cell line, while reducing reporter-based false positives. A quantitative high-throughput screen (qHTS) of 42 577 compounds using this assay revealed diverse novel chemical classes that reduce endogenous Pmp22 transcript levels. Moreover, some of these classes show pharmacological specificity in reducing Pmp22 over another major myelin-associated gene, Mpz (Myelin protein zero). Finally, to investigate whether compound-mediated reduction of Pmp22 transcripts translates to reduced PMP22 protein levels, we edited the S16 genome to generate a reporter assay that expresses a PMP22-HiBiT fusion protein using CRISPR/Cas9. Overall, we present a screening platform that combines genome edited cell lines encoding reporters that monitor transcriptional and post-translational regulation of PMP22 with titration-based screening (e.g., qHTS), which could be efficiently incorporated into drug discovery campaigns for CMT1A.

7.
Curr Biol ; 17(18): 1545-54, 2007 Sep 18.
Article in English | MEDLINE | ID: mdl-17869113

ABSTRACT

BACKGROUND: Successful transition from oocyte to zygote depends on the timely degradation of oocyte proteins to prepare for embryonic development. In C. elegans, degradation of the oocyte protein MEI-1 depends on MBK-2, a kinase that phosphorylates MEI-1 shortly after fertilization during the second meiotic division. RESULTS: Here we report that precise timing of MEI-1 phosphorylation depends on the cell cycle-regulated release of MBK-2 from the cortex. Prior to the meiotic divisions, MBK-2 is tethered at the cortex by EGG-3, an oocyte protein required for egg activation (see [1], accompanying paper in this issue). During the meiotic divisions, EGG-3 is internalized and degraded in an APC/C (anaphase-promoting complex/cyclosome)-dependent manner. EGG-3 internalization and degradation correlate with MBK-2 release from the cortex and MEI-1 phosphorylation in the cytoplasm. In an egg-3 mutant, MEI-1 is phosphorylated and degraded prematurely. CONCLUSION: We suggest that successful transition from an oocyte to a zygote depends on the cell cycle-regulated relocalization of key regulators from the cortex to the cytoplasm of the egg.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/enzymology , Oocytes/enzymology , Protein Tyrosine Phosphatases/physiology , Protein-Tyrosine Kinases/metabolism , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/analysis , Meiosis , Molecular Sequence Data , Oocytes/growth & development , Phosphorylation , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Protein-Tyrosine Kinases/analysis , Recombinant Fusion Proteins/analysis , Ubiquitin-Protein Ligases/metabolism , Zygote/enzymology , Zygote/growth & development , Zygote/metabolism
8.
ACS Comb Sci ; 22(8): 422-432, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32525297

ABSTRACT

Methyltransferases (MTases) play diverse roles in cellular processes. Aberrant methylation levels have been implicated in many diseases, indicating the need for the identification and development of small molecule inhibitors for each MTase. Specific inhibitors can serve as probes to investigate the function and validate therapeutic potential for the respective MTase. High-throughput screening (HTS) is a powerful method to identify initial hits for further optimization. Here, we report the development of a fluorescence-based MTase assay and compare this format with the recently developed MTase-Glo luminescence assay for application in HTS. Using protein N-terminal methyltransferase 1 (NTMT1) as a model system, we miniaturized to 1536-well quantitative HTS format. Through a pilot screen of 1428 pharmacologically active compounds and subsequent validation, we discovered that MTase-Glo produced lower false positive rates than the fluorescence-based MTase assay. Nevertheless, both assays displayed robust performance along with low reagent requirements and can potentially be employed as general HTS formats for the discovery of inhibitors for any MTase.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Methyltransferases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Enzyme Inhibitors/chemistry , Humans , Methyltransferases/metabolism , Molecular Structure , Small Molecule Libraries/chemistry
9.
Elife ; 72018 03 12.
Article in English | MEDLINE | ID: mdl-29528287

ABSTRACT

The nonsense-mediated mRNA decay (NMD) pathway detects aberrant transcripts containing premature termination codons (PTCs) and regulates expression of 5-10% of non-aberrant human mRNAs. To date, most proteins involved in NMD have been identified by genetic screens in model organisms; however, the increased complexity of gene expression regulation in human cells suggests that additional proteins may participate in the human NMD pathway. To identify proteins required for NMD, we performed a genome-wide RNAi screen against >21,000 genes. Canonical members of the NMD pathway were highly enriched as top hits in the siRNA screen, along with numerous candidate NMD factors, including the conserved ICE1/KIAA0947 protein. RNAseq studies reveal that depletion of ICE1 globally enhances accumulation and stability of NMD-target mRNAs. Further, our data suggest that ICE1 uses a putative MIF4G domain to interact with exon junction complex (EJC) proteins and promotes the association of the NMD protein UPF3B with the EJC.


Subject(s)
Carrier Proteins/genetics , Nonsense Mediated mRNA Decay/genetics , Protein Biosynthesis/genetics , RNA Splicing/genetics , RNA-Binding Proteins/genetics , Codon, Nonsense/genetics , Exons/genetics , Gene Expression Regulation , Humans , Protein Domains/genetics , RNA Interference , Ribosomal Proteins/genetics
10.
Trends Parasitol ; 29(12): 603-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24215777

ABSTRACT

With the development of new technologies in genome sequencing, gene expression profiling, genotyping, and high-throughput screening of chemical compound libraries, small molecules are playing increasingly important roles in studying gene expression regulation, gene-gene interaction, and gene function. Here we briefly review and discuss some recent advancements in drug target identification and phenotype characterization using combinations of high-throughput screening of small-molecule libraries and various genome-wide methods such as whole-genome sequencing, genome-wide association studies (GWAS), and genome-wide expression analysis. These approaches can be used to search for new drugs against parasite infections, to identify drug targets or drug resistance genes, and to infer gene function.


Subject(s)
Genomics , Parasites/genetics , Parasitology/trends , Animals , High-Throughput Screening Assays , Mutation , Phenotype , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Transcriptome
11.
Medchemcomm ; 3(12): 1505-1511, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23205265

ABSTRACT

Parasitic diseases continue to have a devastating impact on human populations worldwide. Lack of effective treatments, the high cost of existing ones, and frequent emergence of resistance to these agents provide a strong argument for the development of novel therapies. Here we report the results of a hybrid approach designed to obtain a dual acting molecule that would demonstrate activity against a variety of parasitic targets. The antimalarial drug amodiaquine has been covalently joined with a nitric oxide-releasing furoxan to achieve multiple mechanisms of action. Using in vitro and ex vivo assays, the hybrid molecule shows activity against three parasites - Plasmodium falciparum, Schistosoma mansoni, and Ancylostoma ceylanicum.

12.
ACS Med Chem Lett ; 3(2): 112-117, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22328964

ABSTRACT

Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure-activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.

13.
Science ; 333(6043): 724-9, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21817045

ABSTRACT

Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci associated with differential chemical phenotypes (DCPs), defined as greater than or equal to fivefold differences in half-maximum inhibitor concentration (IC(50)) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild-type or mutant pfcrt alleles were tested in combination in vitro and in vivo, which yielded promising new leads for antimalarial treatments.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Genes, Protozoan , Genome, Protozoan , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/chemistry , Biological Evolution , Chromosome Mapping , Drug Combinations , Drug Resistance/genetics , Genetic Linkage , Genetic Loci , Genome-Wide Association Study , High-Throughput Screening Assays , Inhibitory Concentration 50 , Membrane Transport Proteins/genetics , Molecular Structure , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL