Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
Add more filters

Publication year range
1.
Nature ; 593(7857): 56-60, 2021 05.
Article in English | MEDLINE | ID: mdl-33953409

ABSTRACT

Exciting phenomena may emerge in non-centrosymmetric two-dimensional electronic systems when spin-orbit coupling (SOC)1 interplays dynamically with Coulomb interactions2,3, band topology4,5 and external modulating forces6-8. Here we report synergetic effects between SOC and the Stark effect in centrosymmetric few-layer black arsenic, which manifest as particle-hole asymmetric Rashba valley formation and exotic quantum Hall states that are reversibly controlled by electrostatic gating. The unusual findings are rooted in the puckering square lattice of black arsenic, in which heavy 4p orbitals form a Brillouin zone-centred Γ valley with pz symmetry, coexisting with doubly degenerate D valleys of px origin near the time-reversal-invariant momenta of the X points. When a perpendicular electric field breaks the structure inversion symmetry, strong Rashba SOC is activated for the px bands, which produces spin-valley-flavoured D± valleys paired by time-reversal symmetry, whereas Rashba splitting of the Γ valley is constrained by the pz symmetry. Intriguingly, the giant Stark effect shows the same px-orbital selectiveness, collectively shifting the valence band maximum of the D± Rashba valleys to exceed the Γ Rashba top. Such an orchestrating effect allows us to realize gate-tunable Rashba valley manipulations for two-dimensional hole gases, hallmarked by unconventional even-to-odd transitions in quantum Hall states due to the formation of a flavour-dependent Landau level spectrum. For two-dimensional electron gases, the quantization of the Γ Rashba valley is characterized by peculiar density-dependent transitions in the band topology from trivial parabolic pockets to helical Dirac fermions.

2.
Diabetes Metab Res Rev ; 40(2): e3729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37750562

ABSTRACT

AIMS: To explore the association of dietary vitamin intake from food and/or supplement with mortality in US adults with diabetes. MATERIALS AND METHODS: This prospective cohort study was conducted on 5418 US adults with diabetes from the National Health and Nutrition Examination Survey 1999-2018. Vitamin intake from food and supplements was estimated via dietary recall. Sufficient intake from food or food + supplement was defined as ≥ estimated average requirement (EAR) and ≤ tolerable upper intake level (UL), insufficient intake, < EAR; and excess intake, > UL. Medium supplementary intake was classified as > median level and ≤75th percentile; low intake, ≤ median level; and high intake, >75th percentile, as reported by supplement users. RESULTS: A total of 1601 deaths occurred among the participants over a median follow-up of 11.0 years. Cox regression analysis of the single-vitamin model demonstrated that sufficient vitamin A and folate intake from food and food + supplement and medium vitamin A and folate intake from supplement; sufficient riboflavin, niacin, and vitamin B6 intake from food and food + supplement; and sufficient thiamin and vitamin E intake from food + supplement were significantly associated with reduced all-cause mortality (all p < 0.05). In the multivitamin model, sufficient vitamin A and folate intake from food and food + supplement, medium vitamin A and folate intake from the supplement, and sufficient niacin intake from food and food + supplement were inversely associated with mortality (all p < 0.05). CONCLUSIONS: Vitamin A and folate intake from food or supplement and niacin intake from food were significantly associated with reduced mortality in US adults with diabetes.


Subject(s)
Diabetes Mellitus , Niacin , Adult , Humans , Vitamins , Nutrition Surveys , Vitamin A , Prospective Studies , Diet , Dietary Supplements , Folic Acid
3.
Brain ; 146(10): 4233-4246, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37186601

ABSTRACT

In utero exposure to maternal antibodies targeting the fetal acetylcholine receptor isoform (fAChR) can impair fetal movement, leading to arthrogryposis multiplex congenita (AMC). Fetal AChR antibodies have also been implicated in apparently rare, milder myopathic presentations termed fetal acetylcholine receptor inactivation syndrome (FARIS). The full spectrum associated with fAChR antibodies is still poorly understood. Moreover, since some mothers have no myasthenic symptoms, the condition is likely underreported, resulting in failure to implement effective preventive strategies. Here we report clinical and immunological data from a multicentre cohort (n = 46 cases) associated with maternal fAChR antibodies, including 29 novel and 17 previously reported with novel follow-up data. Remarkably, in 50% of mothers there was no previously established myasthenia gravis (MG) diagnosis. All mothers (n = 30) had AChR antibodies and, when tested, binding to fAChR was often much greater than that to the adult AChR isoform. Offspring death occurred in 11/46 (23.9%) cases, mainly antenatally due to termination of pregnancy prompted by severe AMC (7/46, 15.2%), or during early infancy, mainly from respiratory failure (4/46, 8.7%). Weakness, contractures, bulbar and respiratory involvement were prominent early in life, but improved gradually over time. Facial (25/34; 73.5%) and variable peripheral weakness (14/32; 43.8%), velopharyngeal insufficiency (18/24; 75%) and feeding difficulties (16/36; 44.4%) were the most common sequelae in long-term survivors. Other unexpected features included hearing loss (12/32; 37.5%), diaphragmatic paresis (5/35; 14.3%), CNS involvement (7/40; 17.5%) and pyloric stenosis (3/37; 8.1%). Oral salbutamol used empirically in 16/37 (43.2%) offspring resulted in symptom improvement in 13/16 (81.3%). Combining our series with all previously published cases, we identified 21/85 mothers treated with variable combinations of immunotherapies (corticosteroids/intravenous immunoglobulin/plasmapheresis) during pregnancy either for maternal MG symptom control (12/21 cases) or for fetal protection (9/21 cases). Compared to untreated pregnancies (64/85), maternal treatment resulted in a significant reduction in offspring deaths (P < 0.05) and other complications, with treatment approaches involving intravenous immunoglobulin/ plasmapheresis administered early in pregnancy most effective. We conclude that presentations due to in utero exposure to maternal (fetal) AChR antibodies are more common than currently recognized and may mimic a wide range of neuromuscular disorders. Considering the wide clinical spectrum and likely diversity of underlying mechanisms, we propose 'fetal acetylcholine receptor antibody-related disorders' (FARAD) as the most accurate term for these presentations. FARAD is vitally important to recognize, to institute appropriate management strategies for affected offspring and to improve outcomes in future pregnancies. Oral salbutamol is a symptomatic treatment option in survivors.


Subject(s)
Arthrogryposis , Myasthenia Gravis , Neuromuscular Diseases , Pregnancy , Female , Adult , Humans , Immunoglobulins, Intravenous , Receptors, Cholinergic , Myasthenia Gravis/therapy , Myasthenia Gravis/complications , Autoantibodies , Arthrogryposis/complications
4.
J Environ Manage ; 359: 120880, 2024 May.
Article in English | MEDLINE | ID: mdl-38669879

ABSTRACT

Microorganisms are essential components of underground life systems and drive elemental cycling between plants and soil. Yet, in the ecologically fragile Loess Plateau, scant attention has been paid to the response of microbial communities to organic carbon (C) chemistry of both leaves and soils under different revegetation conditions, as well as subsequent alternation in their C metabolic functions. Here, Fourier transform infrared (FTIR) spectrum, amplicon sequencing of 16S rRNA and ITS, and temporal incubation with Biolog-Eco 96 plates were combined to explore the vegetative heterogeneity of microbial community properties and metabolic functions, as well as their regulatory mechanisms in three typical revegetation types including Robinia pseudoacacia L. (RF), Caragana korshinskii KOM. (SL), and abandoned grassland (AG). We observed higher bacterial-to-fungal ratios (B: F = 270.18) and richer copiotrophic bacteria (Proteobacteria = 33.08%) in RF soil than those in AG soil, suggesting that microbes were dominated by r-strategists in soil under RF treatment, which is mainly related to long-term priming of highly bioavailable leaf C (higher proportion of aromatic and hydrophilic functional groups and lower hydrophobicity). Conversely, microbial taxa in AG soil, which was characterized by higher leaf organic C hydrophobicity (1.39), were dominated by relatively more abundant fungi (lower B: F ratio = 149.49) and oligotrophic bacteria (Actinobacteria = 29.30%). The co-occurrence network analysis showed that microbial interactive associations in RF and AG soil were more complex and connective than in SL soil. Furthermore, Biolog-Eco plate experiments revealed that microorganisms tended to utilize labile C compounds (carbohydrates and amino acids) in RF soil and resistant C compounds (polymers) in AG soil, which were consistent with the substrate adaptation strategies of predominant microbial trophic groups in different revegetation environments. Meanwhile, we observed greater microbial metabolic activity and diversity advantages in RF vegetation. Collectively, we suggest that besides the nutrient variables in the leaf-soil system, the long-term regulation of the microbial community by the C chemistry of the leaf sequentially alters the microbial metabolic profiles in a domino-like manner. RF afforestation is more conducive to restoring soil microbial fertility (including microbial abundance, diversity, interactive association, and metabolic capacity). Our study potentially paves the way for achieving well-managed soil health and accurate prediction of C pool dynamics in areas undergoing ecological restoration of the Loess Plateau.


Subject(s)
Carbon , Plant Leaves , Soil Microbiology , Soil , China , Carbon/metabolism , Soil/chemistry , Plant Leaves/metabolism , RNA, Ribosomal, 16S , Bacteria/metabolism , Bacteria/classification , Microbiota
5.
Small ; 19(33): e2300964, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066740

ABSTRACT

The long-range magnetic ordering in frustrated magnetic systems is stabilized by coupling magnetic moments to various degrees of freedom, for example, by enhancing magnetic anisotropy via lattice distortion. Here, the unconventional spin-lattice coupled metamagnetic properties of atomically-thin CrOCl, a van der Waals antiferromagnet with inherent magnetic frustration rooted in the staggered square lattice, are reported. Using temperature- and angle-dependent tunneling magnetoconductance (TMC), in complementary with magnetic torque and first-principles calculations, the antiferromagnetic (AFM)-to-ferrimagnetic (FiM) metamagnetic transitions (MTs) of few-layer CrOCl are revealed to be triggered by collective magnetic moment flipping rather than the established spin-flop mechanism, when external magnetic field (H) enforces a lattice reconstruction interlocked with the five-fold periodicity of the FiM phase. The spin-lattice coupled MTs are manifested by drastic jumps in TMC, which show anomalous upshifts at the transition thresholds and persist much higher above the AFM Néel temperature. While the MTs exhibit distinctive triaxial anisotropy, reflecting divergent magnetocrystalline anisotropy of the c-axis AFM ground state, the resulting FiM phase has an a-c easy plane in which the magnetization axis is freely rotated by H. At the 2D limit, such a field-tunable FiM phase may provide unique opportunities to explore exotic emergent phenomena and novel spintronics devices.

6.
Environ Sci Technol ; 57(18): 7162-7173, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37098180

ABSTRACT

Acrolein is an identified high-priority hazardous air pollutant ubiquitous in daily life and associated with cardiometabolic risk that attracts worldwide attention. However, the etiology role of acrolein exposure in glucose dyshomeostasis and type 2 diabetes (T2D) is unclear. This repeated-measurement prospective cohort study included 3522 urban adults. Urine/blood samples were repeatedly collected for determinations of acrolein metabolites (N-acetyl-S-(3-hydroxypropyl)-l-cysteine, N-acetyl-S-(2-carboxyethyl)-l-cysteine; acrolein exposure biomarkers), glucose homeostasis, and T2D at baseline and a three-year follow-up. We found that each 3-fold increment in acrolein metabolites was cross-sectionally associated with 5.91-6.52% decrement in homeostasis model assessment-insulin sensitivity (HOMA-IS) and 0.07-0.14 mmol/L, 4.02-4.57, 5.91-6.52, 19-20, 18-19, and 23-31% increments in fasting glucose (FPG), fasting insulin (FPI), HOMA-insulin resistance (HOMA-IR), risks of prevalent IR, impaired fasting glucose (IFG), and T2D, respectively; longitudinally, participants with sustained-high acrolein metabolite levels had increased risks of incident IR, IFG, and T2D by 63-80, 87-99, and 120-154%, respectively (P < 0.05). In addition, biomarkers of heme oxygenase-1 activity (exhaled carbon monoxide), lipid peroxidation (8-iso-prostaglandin-F2α), protein carbonylation (protein carbonyls), and oxidative DNA damage (8-hydroxy-deoxyguanosine) mediated 5.00-38.96% of these associations. Our study revealed that acrolein exposure may impair glucose homeostasis and increase T2D risk via mediating mechanisms of heme oxygenase-1 activation, lipid peroxidation, protein carbonylation, and oxidative DNA damage.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Adult , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Acrolein , Heme Oxygenase-1 , Cohort Studies , Blood Glucose/metabolism , Prospective Studies , Cysteine , Insulin Resistance/physiology , Glucose , Homeostasis , Biomarkers
7.
Environ Res ; 229: 116009, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37119843

ABSTRACT

The associations and potential mechanisms of low to moderate arsenic exposure with fasting plasma glucose (FPG) and type 2 diabetes mellitus (T2DM) are still unclear. To assess the effects of short-term and long-term arsenic exposure on hyperglycemia and the mediating effect of oxidative damage on such association, three repeated-measures studies with 9938 observations were conducted in the Wuhan-Zhuhai cohort. The levels of urinary total arsenic, FPG, urinary 8-iso-prostaglandin F2alpha (8-iso-PGF2α), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and plasma protein carbonyls (PCO) were measured. Generalized linear mixed models were used to evaluate the exposure-response relationships of urinary total arsenic with FPG and the prevalent risks of impaired fasting glucose (IFG), T2DM, and abnormal glucose regulation (AGR). Cox regression models were applied to assess the associations of arsenic exposure with incident risks of IFG, T2DM, and AGR. Mediation analyses were performed to assess the mediating effects of 8-iso-PGF2α, 8-OHdG, and PCO. In cross-sectional analyses, each one-unit increase in natural log-transformed urinary total arsenic was associated with a 0.082 (95% CI: 0.047 to 0.118) mmol/L increase in FPG, as well as a 10.3% (95% CI: 1.4%-20.0%), 4.4% (95% CI: 5.3%-15.2%), and 8.7% (95% CI: 1.2%-16.6%) increase in prevalent risks of IFG, T2DM, and AGR, respectively. In longitudinal analyses, arsenic exposure was further associated with the annual increased rate of FPG with a ß (95% CI) of 0.021 (95% CI: 0.010 to 0.033). The incident risks of IFG, T2DM, and AGR were increased without statistical significance when arsenic levels increased. Mediation analyses showed that 8-iso-PGF2α and PCO mediated 30.04% and 10.02% of the urinary total arsenic-associated FPG elevation, respectively. Our study indicated that arsenic exposure was associated with elevated level and progression rate of FPG among general Chinese adults, where lipid peroxidation and oxidative protein damage might be the potential mechanisms.


Subject(s)
Arsenic , Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Adult , Diabetes Mellitus, Type 2/epidemiology , Arsenic/toxicity , Prospective Studies , Cross-Sectional Studies , Hyperglycemia/chemically induced , Hyperglycemia/epidemiology , Hyperglycemia/complications , Oxidative Stress , Glucose , Blood Glucose/analysis
8.
Pestic Biochem Physiol ; 196: 105587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945224

ABSTRACT

Systemic pesticide exposure through nectar is a growing global concern linked to loss of insect diversity, especially pollinators. The insecticide sulfoxaflor and the fungicide tebuconazole are currently widely used systemic pesticides which are toxic to certain pollinators. However, their metabolisms in floral or extrafloral nectar under different application methods have not yet been well studied. Hibiscus rosa-sinensis was exposed to sulfoxaflor and tebuconazole via soil drenching and foliar spraying. Sulfoxaflor, tebuconazole, and their main metabolites in floral and extrafloral nectar, soil, and leaves were identified and quantified using liquid chromatography coupled with triple quadrupole mass spectrometry (LC-QqQ MS). The chemical compositions of unexposed and contaminated H. rosa-sinensis floral nectar or extrafloral nectar were compared using regular biochemical methods. The activities of two pesticide detoxifying enzymes, glutathione-s-transferase and nitrile hydratase, in H. rosa-sinensis nectar were examined using LC-MS and spectrophotometry. The floral nectar proteome of H. rosa-sinensis was analysed using high-resolution orbitrap-based MS/MS analysis to screen for sulfoxaflor and tebuconazole detoxifying enzymes. H. rosa-sinensis can absorb sulfoxaflor and tebuconazole through its roots or leaf surfaces and secrete them into floral nectar and extrafloral nectar. Both sulfoxaflor and tebuconazole and their major metabolites were present at higher concentrations in extrafloral nectar than in floral nectar. X11719474 was the dominant metabolite of sulfoxaflor in the nectars we studied. Compared with soil application, more sulfoxaflor and tebuconazole remained in their original forms in floral nectar and extrafloral nectar after foliar application. Sulfoxaflor and tebuconazole exposure did not modify the chemical composition of floral or extrafloral nectar. No active components, including proteins in the nectar, were detected to be able to detoxify sulfoxaflor.


Subject(s)
Hibiscus , Malvaceae , Pesticides , Rosa , Plant Nectar/chemistry , Plant Nectar/metabolism , Hibiscus/metabolism , Malvaceae/metabolism , Tandem Mass Spectrometry , Soil
9.
BMC Med Educ ; 23(1): 646, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679696

ABSTRACT

BACKGROUND: Spatial epidemiology plays an important role in public health. Yet, it is unclear whether the current university education in spatial epidemiology in China could meet the competency-oriented professional demands. This study aimed to understand the current situation of education and training, practical application, and potential demands in spatial epidemiology among public health postgraduates in China, and to assess the critical gaps in a future emerging infectious diseases (EID) pandemic preparedness and response. METHODS: This study was divided into three parts. The first part was a comparative study on spatial epidemiology education in international public health postgraduate training. The second part was a cross-sectional survey conducted among public health professionals. The third part was a nationwide cross-sectional survey conducted among public health postgraduates at Chinese universities from October 2020 to February 2021. Data was collected by the WeChat-based questionnaire star survey system and analyzed using the SPSS software. RESULTS: International education institutions had required public health postgraduates to master the essential knowledge and capacity of spatial epidemiology. A total of 198 public health professionals were surveyed, and they had a median of 4.00 (IQR 3.13-4.53) in demand degree of spatial epidemiology. A total of 1354 public health postgraduates were surveyed from 51 universities. Only 29.41% (15/51) of universities offered spatial epidemiology course. Around 8.05% (109/1354) of postgraduates had learned spatial epidemiology, and had a median of 1.05 (IQR 1.00-1.29) in learning degree and a median of 1.91 (IQR 1.05-2.78) in practical application degree of spatial epidemiology. To enhance professional capacity, 65.95% (893/1354) of postgraduates hoped that universities would deliver a credit-course of spatial epidemiology. CONCLUSIONS: A huge unmet education and training demand in spatial epidemiology existed in the current education system of public health postgraduates in China. To enhance the competency-oriented professional capacity in preparedness and response to a future pandemic, it is urgent to incorporate the teaching and training of spatial epidemiology into the compulsory curriculum system of public health postgraduates in China.


Subject(s)
Pandemics , Humans , Universities , Cross-Sectional Studies , Self Report , China/epidemiology
10.
J Biol Chem ; 297(4): 101112, 2021 10.
Article in English | MEDLINE | ID: mdl-34428449

ABSTRACT

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Subject(s)
COVID-19/pathology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Sequence , COVID-19/virology , Cysteine/metabolism , HEK293 Cells , Humans , Lipoylation , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
11.
Cancer Immunol Immunother ; 71(11): 2583-2596, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35299256

ABSTRACT

Non-keratinizing nasopharyngeal carcinoma (NPC) is a malignancy with a poor prognosis for relapsing patients and those with metastatic disease. Here, we identify a novel disease mechanism of NPC which may be its Achilles' heel that makes it susceptible to immunotherapy. CD137 is a potent costimulatory receptor on activated T cells, and CD137 agonists strongly enhance anti-tumor immune responses. A negative feedback mechanism prevents overstimulation by transferring CD137 from T cells to CD137 ligand (CD137L)-expressing antigen presenting cells (APC) during cognate interaction, upon which the CD137-CD137L complex is internalized and degraded. We found ectopic expression of CD137 on 42 of 122 (34.4%) NPC cases, and that CD137 is induced by the Epstein-Barr virus latent membrane protein (LMP) 1. CD137 expression enables NPC to hijack the inbuilt negative feedback mechanism to downregulate the costimulatory CD137L on APC, facilitating its escape from immune surveillance. Further, the ectopically expressed CD137 signals into NPC cells via the p38-MAPK pathway, and induces the expression of IL-6, IL-8 and Laminin γ2. As much as ectopic CD137 expression may support the growth and spread of NPC, it may be a target for its immunotherapeutic elimination. Natural killer cells that express a CD137-specific chimeric antigen receptor induce death in CD137+ NPC cells, in vitro, and in vivo in a murine xenograft model. These data identify a novel immune escape mechanism of NPC, and lay the foundation for an urgently needed immunotherapeutic approach for NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Receptors, Chimeric Antigen , 4-1BB Ligand , Animals , Herpesvirus 4, Human , Humans , Interleukin-6 , Interleukin-8 , Laminin , Mice , Nasopharyngeal Carcinoma , Neoplasm Recurrence, Local , Tumor Necrosis Factor Receptor Superfamily, Member 9
12.
J Med Internet Res ; 24(3): e31449, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35319478

ABSTRACT

BACKGROUND: The use of mobile health technologies has been necessary to deliver patient education to patients with diabetes during the COVID-19 pandemic. OBJECTIVE: This open-label randomized controlled trial evaluated the effects of a diabetes educational platform-Taipei Medical University-LINE Oriented Video Education-delivered through a social media app. METHODS: Patients with type 2 diabetes were recruited from a clinic through physician referral. The social media-based program included 51 videos: 10 about understanding diabetes, 10 about daily care, 6 about nutrition care, 21 about diabetes drugs, and 4 containing quizzes. The intervention group received two or three videos every week and care messages every 2 weeks through the social media platform for 3 months, in addition to usual care. The control group only received usual care. Outcomes were measured at clinical visits through self-reported face-to-face questionnaires at baseline and at 3 months after the intervention, including the Simplified Diabetes Knowledge Scale (true/false version), the Diabetes Care Profile-Attitudes Toward Diabetes Scales, the Summary of Diabetes Self-Care Activities, and glycated hemoglobin (HbA1c) levels. Health literacy was measured at baseline using the Newest Vital Sign tool. Differences in HbA1c levels and questionnaire scores before and after the intervention were compared between groups. The associations of knowledge, attitudes, and self-care activities with health literacy were assessed. RESULTS: Patients with type 2 diabetes completed the 3-month study, with 91 out of 181 (50.3%) patients in the intervention group and 90 (49.7%) in the control group. The change in HbA1c did not significantly differ between groups (intervention group: mean 6.9%, SD 0.8% to mean 7.0%, SD 0.9%, P=.34; control group: mean 6.7%, SD 0.6% to mean 6.7%, SD 0.7%, P=.91). Both groups showed increased mean knowledge scores at 12 weeks, increasing from 68.3% (SD 16.4%) to 76.7% (SD 11.7%; P<.001) in the intervention group and from 64.8% (SD 18.2%) to 73.2% (SD 12.6%; P<.001) in the control group. Positive improvements in attitudes and self-care activities were only observed in the intervention group (attitudes: mean difference 0.2, SD 0.5, P=.001; self-care activities: mean difference 0.3, SD 1.2, P=.03). A 100% utility rate was achieved for 8 out of 21 (38%) medication-related videos. Low health literacy was a significant risk factor for baseline knowledge scores in the intervention group, with an odds ratio of 2.80 (95% CI 1.28-6.12; P=.01); this became insignificant after 3 months. CONCLUSIONS: The social media-based program was effective at enhancing the knowledge, attitudes, and self-care activities of patients with diabetes. This intervention was also helpful for patients with low health literacy in diabetes knowledge. The program represents a potentially useful tool for delivering diabetes education to patients through social media, especially during the COVID-19 pandemic. TRIAL REGISTRATION: ClinicalTrials.gov NCT04876274; https://clinicaltrials.gov/ct2/show/results/NCT04876274.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Self-Management , Social Media , Diabetes Mellitus, Type 2/therapy , Health Knowledge, Attitudes, Practice , Humans , Pandemics , Patient Education as Topic
13.
Sleep Breath ; 25(4): 2277-2285, 2021 12.
Article in English | MEDLINE | ID: mdl-33738752

ABSTRACT

PURPOSE: To investigate the associations between sleep duration and atherosclerotic cardiovascular disease (ASCVD) risk and the potential mechanism. METHODS: Overall, 24,471 subjects without ASCVD were included from Dongfeng-Tongji (DFTJ) cohort. Data collection included questionnaires and general medical examinations. We used logistic regression models and generalized linear models to examine the associations between sleep duration, peripheral white blood cell (WBC) counts, and 10-year ASCVD risk. Mediation analyses were further performed to assess the potential role of peripheral WBC counts in the associations between sleep duration and 10-year ASCVD risk. RESULTS: Increased risk of 10-year ASCVD was observed as sleep duration extended. After adjusting for potential confounders, the odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of 10-year ASCVD were 1.24 (1.11-1.38), 1.12 (1.03-1.22), and 1.21(1.08-1.36) for individuals with nighttime sleeping duration of ≥ 9 h, daytime napping duration of > 30 min, and daily sleep duration of ≥ 9 h, respectively. Peripheral WBC counts mediated 14.1%, 14.5%, and 12.6% in the associations of nighttime sleep duration of ≥ 9 h, daytime napping duration of > 30 min and daily sleep duration of ≥ 9 h with 10-year ASCVD risk, respectively. CONCLUSIONS: Extended sleep durations are associated with the increased 10-year ASCVD risk, and the associations are partially mediated by peripheral WBC counts.


Subject(s)
Atherosclerosis/epidemiology , Heart Disease Risk Factors , Leukocyte Count , Sleep , Aged , Atherosclerosis/blood , China/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Sleep/physiology , Time Factors
14.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209797

ABSTRACT

Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Cryotherapy/adverse effects , Iron/metabolism , Iron/pharmacology , Macrophage Activation/drug effects , T-Lymphocytes, Cytotoxic/drug effects , Animals , CD4-Positive T-Lymphocytes/physiology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Polarity/drug effects , Cells, Cultured , Female , Iron Chelating Agents/pharmacology , Lymphocyte Activation/drug effects , Macrophage Activation/physiology , Macrophages/drug effects , Macrophages/physiology , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , T-Lymphocytes, Cytotoxic/physiology
15.
Thorax ; 75(9): 798-800, 2020 09.
Article in English | MEDLINE | ID: mdl-32467338

ABSTRACT

Global incidence and temporal trends of asbestosis are rarely explored. Using the detailed information on asbestosis from the Global Burden of Disease (GBD) 2017, we described the age-standardised incidence rate (ASIR) and its average annual percentage change. A Joinpoint Regression model was applied to identify varying temporal trends over time. Although the use of asbestos has been completely banned in many countries, the ASIR of asbestosis increased globally from 1990 to 2017. Furthermore, the most pronounced increases in ASIR of asbestosis were detected in high-income North America and Australasia. These findings indicate that efforts to change the asbestos regulation policy are urgently needed.


Subject(s)
Asbestosis/epidemiology , Global Burden of Disease/trends , Africa/epidemiology , Asia/epidemiology , Caribbean Region/epidemiology , Central America/epidemiology , Europe/epidemiology , Humans , Incidence , North America/epidemiology , Oceania/epidemiology , South America/epidemiology
16.
J Comput Chem ; 41(20): 1859-1867, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32497321

ABSTRACT

We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object-oriented, customizable implementation of CDFT, and allows for both single-point self-consistent-field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn-Sham Hamiltonian. Here, we demonstrate the use of PyCDFT by performing calculations with a massively parallel first-principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available at https://dx.doi.org/10.5281/zenodo.3821097.

17.
Indoor Air ; 30(4): 682-690, 2020 07.
Article in English | MEDLINE | ID: mdl-32080892

ABSTRACT

About 339 million people worldwide are suffering from asthma. We aimed to investigate whether exposure to formaldehyde (FA) is associated with asthma, which could provide clues for preventive and mitigation actions. This article provides a systematic review and meta-analysis of observational studies to assess the association between indoor FA exposure and the risk of asthma in children and adults. An electronic search of PubMed, Embase, and Web of Science was performed to collect all relevant studies published before January 1, 2020, and a total of 13 papers were included in this meta-analysis. A random-effect model was conducted to calculate the pooled odds ratio (OR) between FA exposure and asthma. We found that each 10 µg/m3 increase in FA exposure was significantly associated with a 10% increase in the risk of asthma in children (OR = 1.10, 95% confidence interval = 1.00-1.21). We sorted the FA concentrations reported in the selected articles and categorized exposure variables into low (FA ≤ 22.5 µg/m3 ) and high exposure (FA > 22.5 µg/m3 ) according to the median concentration of FA. In the high-exposure adult group, FA exposure may also be associated with an increased risk of asthma (OR = 1.81, 95% CI = 1.18-2.78).


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Asthma/epidemiology , Formaldehyde , Inhalation Exposure/statistics & numerical data , Humans
18.
Int J Neurosci ; 130(11): 1142-1150, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32064985

ABSTRACT

Purpose: In this study, we sought to test the hypothesis that oxidative stress injury in ischemic brains and H2O2-treated mouse neuroblastoma Neuro-2a cells (N2a) was related to STAT3 activation.Materials and methods: Rat middle cerebral artery occlusion (MCAO) model and H2O2-treated mouse neuroblastoma Neuro-2a cells (N2a) were used to investigate the relationship between oxidative stress injury and STAT3 activation.Results: 8-Hydroxy-2'-deoxyguanosine (8-OHdG) content and STAT3 protein phosphorylation level were significantly increased after cerebral ischemia-reperfusion. H2O2 treatment inhibited the cell viability, induced the apoptosis, and further raised pSTAT3 protein level in N2a cells. Moreover, the addition of AG490, the protein inhibitor of JAK2, significantly alleviated cerebral ischemic damage in vivo and H2O2-induced injury in vitro, and JAK2 siRNA also alleviated H2O2-induced injury in N2a cell.Conclusions: JAK2/STAT3 pathway may play a crucial role in mediating reactive oxidative species (ROS)-induced cell injury in rat middle cerebral artery occlusion (MCAO) model and N2a cells. ROS scavenging and down-regulation of STAT3 activation might be a candidate design of therapeutic strategies against oxidative stress-related neurological diseases.


Subject(s)
Apoptosis , Enzyme Inhibitors/pharmacology , Hydrogen Peroxide/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Janus Kinase 2/metabolism , Neuroblastoma , Oxidants/pharmacology , Oxidative Stress , Reperfusion Injury/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/drug effects , Mice , Oxidative Stress/drug effects , Rats , STAT3 Transcription Factor/drug effects , Signal Transduction/drug effects , Tyrphostins/pharmacology
19.
J Cell Mol Med ; 23(7): 4795-4807, 2019 07.
Article in English | MEDLINE | ID: mdl-31087489

ABSTRACT

Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia-mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF-κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion-reperfusion (MCAO) model and oxygen-glucose deprivation (OGD)-treated BV-2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor-α, interleukin-1ß and interleukin-6 were also augmented by FD treatment in microglial cells of the post-ischaemic hippocampus and in vitro OGD-stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF-κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF-κB p65. Blocking of Notch1 with N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester partly attenuated the nuclear translocation of NF-κB p65 and the protein expression of neuroinflammatory cytokines in FD-treated hypoxic BV-2 microglia. These results suggested that Notch1/NF-κB p65 pathway-mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia-reperfusion injury worsened by FD treatment.


Subject(s)
Brain Injuries/complications , Brain Ischemia/complications , Folic Acid Deficiency/immunology , Hippocampus/metabolism , Microglia/immunology , Receptor, Notch1/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Animals , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Line , Cytokines/metabolism , Dipeptides/pharmacology , Glucose/deficiency , Infarction, Middle Cerebral Artery/complications , Inflammation/pathology , Male , Mice , Microglia/drug effects , Neurons/drug effects , Neurons/pathology , Oxygen , Rats, Sprague-Dawley , Signal Transduction/drug effects
20.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28242650

ABSTRACT

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Subject(s)
Immunity, Innate/immunology , Strongylocentrotus purpuratus/immunology , Amino Acid Sequence , Animals , Circular Dichroism , Computational Biology , Genetic Variation , Peptide Fragments/immunology , Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL