Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Cancer ; 153(6): 1118-1129, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37096795

ABSTRACT

Breast cancer brain metastasis (BCBM) is rapidly becoming an impediment to continuing survival gains seen in breast cancer patients. Drug delivery across the blood-brain barrier is the main issue hindering systemic therapy against BCBM. This review details recent advances in nanoparticle (NP) drug delivery systems to target BCBM. Their primary benefits are: enhanced circulating and intra-BCBM drug biodistribution, BCBM targeting through NP functionalization, opportunities for gene manipulation and their theragnostic applications. Multiple NPs have been synthesized to deliver therapeutic HER2 blockade, which is particularly important given HER2-positive breast cancer's tendency to form BCBM. Finally, we review the clinical context in which NP-based therapeutics have been investigated in BCBM patients. While a breakthrough in improving patient outcomes remain awaited, these clinical trials represent positive steps in the changing attitude towards BCBM as a treatable illness. Although multiple challenges remain in the clinical translation of BCBM-directed NP therapies, ongoing research in the field offers promising avenues for novel targeting of this devastating disease.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Tissue Distribution , Brain Neoplasms/genetics , Drug Delivery Systems
2.
BMC Cancer ; 23(1): 820, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667231

ABSTRACT

BACKGROUND: Global annual cancer incidence is forecast to rise to 27.5 M by 2040, a 62% increase from 2018. For most cancers, prevention and early detection are the most effective ways of reducing mortality. This study maps trials in cancer screening, prevention, and early diagnosis (SPED) to identify areas of unmet need and highlight research priorities. METHODS: A systematic mapping review was conducted to evaluate all clinical trials focused on cancer SPED, irrespective of tumour type. The National Cancer Research Institute (NCRI) portfolio, EMBASE, PubMed and Medline were searched for relevant papers published between 01/01/2007 and 01/04/2020. References were exported into Covidence software and double-screened. Data were extracted and mapped according to tumour site, geographical location, and intervention type. RESULTS: One hundred seventeen thousand seven hundred one abstracts were screened, 5157 full texts reviewed, and 2888 studies included. 1184 (52%) trials focussed on screening, 554 (24%) prevention, 442 (20%) early diagnosis, and 85 (4%) a combination. Colorectal, breast, and cervical cancer comprised 61% of all studies compared with 6.4% in lung and 1.8% in liver cancer. The latter two are responsible for 26.3% of global cancer deaths compared with 19.3% for the former three. Number of studies varied markedly according to geographical location; 88% were based in North America, Europe, or Asia. CONCLUSIONS: This study shows clear disparities in the volume of research conducted across different tumour types and according to geographical location. These findings will help drive future research effort so that resources can be directed towards major challenges in cancer SPED.


Subject(s)
Liver Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Early Detection of Cancer , Asia , Breast
3.
Lancet Oncol ; 21(10): 1309-1316, 2020 10.
Article in English | MEDLINE | ID: mdl-32853557

ABSTRACT

BACKGROUND: Patients with cancer are purported to have poor COVID-19 outcomes. However, cancer is a heterogeneous group of diseases, encompassing a spectrum of tumour subtypes. The aim of this study was to investigate COVID-19 risk according to tumour subtype and patient demographics in patients with cancer in the UK. METHODS: We compared adult patients with cancer enrolled in the UK Coronavirus Cancer Monitoring Project (UKCCMP) cohort between March 18 and May 8, 2020, with a parallel non-COVID-19 UK cancer control population from the UK Office for National Statistics (2017 data). The primary outcome of the study was the effect of primary tumour subtype, age, and sex and on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence and the case-fatality rate during hospital admission. We analysed the effect of tumour subtype and patient demographics (age and sex) on prevalence and mortality from COVID-19 using univariable and multivariable models. FINDINGS: 319 (30·6%) of 1044 patients in the UKCCMP cohort died, 295 (92·5%) of whom had a cause of death recorded as due to COVID-19. The all-cause case-fatality rate in patients with cancer after SARS-CoV-2 infection was significantly associated with increasing age, rising from 0·10 in patients aged 40-49 years to 0·48 in those aged 80 years and older. Patients with haematological malignancies (leukaemia, lymphoma, and myeloma) had a more severe COVID-19 trajectory compared with patients with solid organ tumours (odds ratio [OR] 1·57, 95% CI 1·15-2·15; p<0·0043). Compared with the rest of the UKCCMP cohort, patients with leukaemia showed a significantly increased case-fatality rate (2·25, 1·13-4·57; p=0·023). After correction for age and sex, patients with haematological malignancies who had recent chemotherapy had an increased risk of death during COVID-19-associated hospital admission (OR 2·09, 95% CI 1·09-4·08; p=0·028). INTERPRETATION: Patients with cancer with different tumour types have differing susceptibility to SARS-CoV-2 infection and COVID-19 phenotypes. We generated individualised risk tables for patients with cancer, considering age, sex, and tumour subtype. Our results could be useful to assist physicians in informed risk-benefit discussions to explain COVID-19 risk and enable an evidenced-based approach to national social isolation policies. FUNDING: University of Birmingham and University of Oxford.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/mortality , Pandemics , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2
4.
Neuro Oncol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093926

ABSTRACT

BACKGROUND: Recent studies have challenged the notion that patients with brain metastasis (BM) or leptomeningeal metastasis (LM) should be excluded from systemic therapy clinical trials. This scoping study summarises the BM/LM clinical studies published between 2010 and 2023. METHODS: MEDLINE, CINAHL, CAB Abstracts, PsycINFO, Cochrane Library, HINARI, International Pharmaceutical Abstracts, PubMed, Scopus, Web of Science, and EMBASE electronic databases were searched on 21 June 2021. An updated search was performed on 21 February 2023. Eligible studies should involve investigation of a therapeutic intervention in solid tumour patients with BM and/or LM and a reported patient outcome. Extracted study-level data, included study type, publication date, geographical location, number of BM/LM patients in study, primary tumour type and type of therapeutic intervention. RESULTS: 4921 unique studies were eligible for analysis. The key finding is that BM/LM clinical research is expanding globally, both observational studies and clinical trials. Despite the shift over time towards a higher proportion of systemic therapy trials, the majority still do not include patients with symptomatic disease and lack reporting of BM/LM specific endpoints. Globally, there has been a trend to more international collaboration in BM/LM clinical studies. CONCLUSIONS: This analysis of the BM/LM literature charts the evolving landscape of studies involving this previously excluded population. Given the increasing clinical research activity, particularly involving late-stage systemic therapy trials, it is imperative that due consideration is given to the intracranial activity of new investigational agents. Wider adoption of standardised reporting of intracranial-specific endpoints will facilitate evaluation of relative intracranial efficacy.

5.
Adv Drug Deliv Rev ; 191: 114583, 2022 12.
Article in English | MEDLINE | ID: mdl-36272635

ABSTRACT

The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.


Subject(s)
Blood-Brain Barrier , Microbubbles , Humans , Biological Transport , Contrast Media , Drug Delivery Systems , Magnetic Resonance Imaging
6.
Neuro Oncol ; 24(1): 52-63, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34297105

ABSTRACT

BACKGROUND: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilization, while minimizing potential toxicity. METHODS: A library of human TNF muteins (mutTNF) was generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilizing activity in vitro, potential immunogenicity, and circulatory half-life. The permeabilizing ability of the most promising variant was assessed in vivo in a model of brain metastasis. RESULTS: The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity, and permeabilization of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilization was induced selectively at sites of micrometastases in vivo, with a time window of ≥24 hours and enabling delivery of agents within a therapeutically relevant range (0.5-150 kDa), including the clinically approved therapy, trastuzumab. CONCLUSIONS: We have developed a clinically translatable mutTNF that selectively opens the BBB at micrometastatic sites, while leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Neoplasms/drug therapy , Mice , Trastuzumab , Tumor Necrosis Factor-alpha/metabolism
7.
Clin Cancer Res ; 28(11): 2385-2396, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312755

ABSTRACT

PURPOSE: Despite optimal local therapy, tumor cell invasion into normal brain parenchyma frequently results in recurrence in patients with solid tumors. The aim of this study was to determine whether microvascular inflammation can be targeted to better delineate the tumor-brain interface through vascular cell adhesion molecule-1 (VCAM-1)-targeted MRI. EXPERIMENTAL DESIGN: Intracerebral xenograft rat models of MDA231Br-GFP (breast cancer) brain metastasis and U87MG (glioblastoma) were used to histologically examine the tumor-brain interface and to test the efficacy of VCAM-1-targeted MRI in detecting this region. Human biopsy samples of the brain metastasis and glioblastoma margins were examined for endothelial VCAM-1 expression. RESULTS: The interface between tumor and surrounding normal brain tissue exhibited elevated endothelial VCAM-1 expression and increased microvessel density. Tumor proliferation and stemness markers were also significantly upregulated at the tumor rim in the brain metastasis model. T2*-weighted MRI, following intravenous administration of VCAM-MPIO, highlighted the tumor-brain interface of both tumor models more extensively than gadolinium-DTPA-enhanced T1-weighted MRI. Sites of VCAM-MPIO binding, evident as hypointense signals on MR images, correlated spatially with endothelial VCAM-1 upregulation and bound VCAM-MPIO beads detected histologically. These findings were further validated in an orthotopic medulloblastoma model. Finally, the tumor-brain interface in human brain metastasis and glioblastoma samples was similarly characterized by microvascular inflammation, extending beyond the region detectable using conventional MRI. CONCLUSIONS: This work illustrates the potential of VCAM-1-targeted MRI for improved delineation of the tumor-brain interface in both primary and secondary brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/metabolism , Disease Models, Animal , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Humans , Inflammation/metabolism , Magnetic Resonance Imaging/methods , Rats , Vascular Cell Adhesion Molecule-1/metabolism
8.
JAMA Netw Open ; 5(2): e220130, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35188551

ABSTRACT

Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19-related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/mortality , Lung Neoplasms/mortality , SARS-CoV-2 , Aged , Aged, 80 and over , Cohort Studies , Drug Therapy , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Immunotherapy , Lung Neoplasms/complications , Lung Neoplasms/therapy , Male , Middle Aged , Prospective Studies , Registries , United Kingdom
9.
Clin Cancer Res ; 25(2): 533-543, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30389659

ABSTRACT

PURPOSE: A major issue for the effective treatment of brain metastasis is the late stage of diagnosis with existing clinical tools. The aim of this study was to evaluate the potential of vascular cell adhesion molecule 1 (VCAM-1)-targeted MRI for early detection of brain micrometastases in mouse models across multiple primary tumor types.Experimental Design: Xenograft models of brain micrometastasis for human breast carcinoma (MDA231Br-GFP), lung adenocarcinoma (SEBTA-001), and melanoma (H1_DL2) were established via intracardiac injection in mice. Animals (n = 5-6/group) were injected intravenously with VCAM-1-targeted microparticles of iron oxide (VCAM-MPIO) and, subsequently, underwent T 2*-weighted MRI. Control groups of naïve mice injected with VCAM-MPIO and tumor-bearing mice injected with nontargeting IgG-MPIO were included. RESULTS: All models showed disseminated micrometastases in the brain, together with endothelial VCAM-1 upregulation across the time course. T 2*-weighted MRI of all tumor-bearing mice injected with VCAM-MPIO showed significantly more signal hypointensities (P < 0.001; two-sided) than control cohorts, despite a lack of blood-brain barrier (BBB) impairment. Specific MPIO binding to VCAM-1-positive tumor-associated vessels was confirmed histologically. VCAM-1 expression was demonstrated in human brain metastasis samples, across all three primary tumor types. CONCLUSIONS: VCAM-1-targeted MRI enables the detection of brain micrometastases from the three primary tumor types known to cause the majority of clinical cases. These findings represent an important step forward in the development of a broadly applicable and clinically relevant imaging technique for early diagnosis of brain metastasis, with significant implications for improved patient survival.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/secondary , Magnetic Resonance Imaging , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Biomarkers , Brain Neoplasms/metabolism , Cell Line, Tumor , Contrast Media , Disease Models, Animal , Heterografts , Humans , Immunohistochemistry , Magnetic Resonance Imaging/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL