Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 11(9): e1005119, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26407009

ABSTRACT

Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis.


Subject(s)
Amidohydrolases/blood , Arginine/blood , Malaria/metabolism , Nitric Oxide/metabolism , Animals , Case-Control Studies , Disease Models, Animal , Endothelium, Vascular/metabolism , Gambia , Homeostasis/physiology , Humans , Liver/enzymology , Mice
2.
J Infect Dis ; 214(12): 1840-1849, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27923948

ABSTRACT

BACKGROUND: Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion. METHODS: We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice. RESULTS: Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice. CONCLUSIONS: Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance.


Subject(s)
Arginine/blood , Malaria, Cerebral/pathology , Malaria/pathology , Plasma/chemistry , Plasmodium berghei/growth & development , Animals , Arginase/genetics , Child , Child, Preschool , Chromatography, High Pressure Liquid , Citrulline/blood , Female , Humans , Infant , Malawi , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ornithine/blood , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Biomed Chromatogr ; 30(3): 294-300, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26130049

ABSTRACT

N(G) ,N(G) -dimethyl-l-arginine (asymmetric dimethylarginine, ADMA),N(G) -monomethyl-l-arginine (l-NMMA) and N(G) ,N(G') -dimethyl-l-arginine (symmetric dimethylarginine, SDMA) are released during hydrolysis of proteins containing methylated arginine residues. ADMA and l-NMMA inhibit nitric oxide synthase by competing with l-arginine substrate. All three methylarginine derivatives also inhibit arginine transport. To enable investigation of methylarginines in diseases involving impaired nitric oxide synthesis, we developed a high-performance liquid chromatography (HPLC) assay to simultaneously quantify arginine, ADMA, l-NMMA and SDMA. Our assay requires 12 µL of plasma and is ideal for applications where sample availability is limited. We extracted arginine and methylarginines with mixed-mode cation-exchange columns, using synthetic monoethyl-l-arginine as an internal standard. Metabolites were derivatized with ortho-phthaldialdeyhde and 3-mercaptopropionic acid, separated by reverse-phase HPLC and quantified with fluorescence detection. Standard curve linearity was ≥0.9995 for all metabolites. Inter-day coefficient of variation (CV) values were ≤5% for arginine, ADMA and SDMA in human plasma and for arginine and ADMA in mouse plasma. The CV value for l-NMMA was higher in human (10.4%) and mouse (15.8%) plasma because concentrations were substantially lower than ADMA and SDMA. This assay provides unique advantages of small sample volume requirements, excellent separation of target metabolites from contaminants and validation for both human and mouse plasma samples.


Subject(s)
Arginine/administration & dosage , Arginine/blood , Chromatography, High Pressure Liquid/methods , Animals , Calibration , Chromatography, High Pressure Liquid/standards , Humans , Limit of Detection , Linear Models , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL