Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Br J Cancer ; 125(9): 1185-1196, 2021 10.
Article in English | MEDLINE | ID: mdl-34262149

ABSTRACT

Although low risk localised prostate cancer has an excellent prognosis owing to effective treatments, such as surgery, radiation, cryosurgery and hormone therapy, metastatic prostate cancer remains incurable. Existing therapeutic regimens prolong life; however, they are beset by problems of resistance, resulting in poor outcomes. Treatment resistance arises primarily from tumour heterogeneity, altered genetic signatures and metabolic reprogramming, all of which enable the tumour to serially adapt to drugs during the course of treatment. In this review, we focus on alterations in the metabolism of prostate cancer, including genetic signatures and molecular pathways associated with metabolic reprogramming. Advances in our understanding of prostate cancer metabolism might help to explain many of the adaptive responses that are induced by therapy, which might, in turn, lead to the attainment of more durable therapeutic responses.


Subject(s)
Metabolic Networks and Pathways , Prostatic Neoplasms/metabolism , Cellular Reprogramming , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Oxidative Phosphorylation , Prognosis , Prostatic Neoplasms/genetics
2.
Brain Behav Immun ; 62: 332-343, 2017 May.
Article in English | MEDLINE | ID: mdl-28238951

ABSTRACT

Therapies with both immunomodulatory and neuroprotective properties are thought to have the greatest promise in reducing the severity and progression of multiple sclerosis (MS). Several reactive oxygen (ROS) and reactive nitrogen species (RNS) are implicated in inflammatory-mediated damage to the central nervous system (CNS) in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) is a stable nitroxide radical with potent antioxidant activity. The goal of our studies was to investigate the immunomodulatory effects and therapeutic potential of orally-delivered TEMPOL in the mouse EAE model. Mice receiving TEMPOL chow ad libitum for 2weeks prior to induction of active EAE showed delayed onset and reduced incidence of disease compared to control-fed animals. Reduced disease severity was associated with limited microglial activation and fewer inflammatory infiltrates. TEMPOL's effects were immunomodulatory, not immunosuppressive: T cells produced less interferon-γ and tumor necrosis factor-α, and TEMPOL-fed mice exhibited a shift towards TH2-type antibody responses. Both myeloid and myeloid-dendritic cells of TEMPOL-fed EAE animals had significantly lower levels of MHC class II expression than controls; CD40 was also significantly reduced. TEMPOL administration was associated with an enrichment of CD8+ T cell populations and CD4+FoxP3+ regulatory populations. TEMPOL reduced the severity of clinical disease when administered after the induction of disease, and also after the onset of clinical symptoms. To exclude effects on T cell priming in vivo, TEMPOL was tested with the passive transfer of encephalitogenic T cells and was found to reduce the incidence and peak severity of disease. Protection was associated with reduced infiltrates and a relative sparing of neurofilaments and axons. The ability of oral TEMPOL to reduce inflammation and axonal damage and loss demonstrate both anti-inflammatory and protective properties, with significant promise for the treatment of MS and related neurological disorders.


Subject(s)
Cyclic N-Oxides/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunologic Factors/pharmacology , Microglia/drug effects , Multiple Sclerosis/diagnostic imaging , Administration, Oral , Animals , Cyclic N-Oxides/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunologic Factors/therapeutic use , Inflammation/drug therapy , Mice , Multiple Sclerosis/immunology , Spin Labels , Treatment Outcome
3.
Neurooncol Adv ; 5(1): vdad143, 2023.
Article in English | MEDLINE | ID: mdl-38024238

ABSTRACT

Background: Mutant isocitrate dehydrogenase (IDHmut) catalyzes 2-hydroxyglutarate (2HG) production and is considered a therapeutic target for IDHmut tumors. However, response is mostly associated with inhibition of tumor growth. Response assessment via anatomic imaging is therefore challenging. Our goal was to directly detect IDHmut inhibition using a new hyperpolarized (HP) 13C magnetic resonance spectroscopy-based approach to noninvasively assess α-ketoglutarate (αKG) metabolism to 2HG and glutamate. Methods: We studied IDHmut-expressing normal human astrocyte (NHAIDH1mut) cells and rats with BT257 tumors, and assessed response to the IDHmut inhibitor BAY-1436032 (n ≥ 4). We developed a new 13C Echo Planar Spectroscopic Imaging sequence with an optimized RF pulse to monitor the fate of HP [1-13C]αKG and [5-12C,1-13C]αKG with a 2.5 × 2.5 × 8 mm3 spatial resolution. Results: Cell studies confirmed that BAY-1436032-treatment leads to a drop in HP 2HG and an increase in HP glutamate detectable with both HP substrates. Data using HP [5-12C,1-13C]αKG also demonstrated that its conversion to 2HG is detectable without the proximal 1.1% natural abundance [5-13C]αKG signal. In vivo studies showed that glutamate is produced in normal brains but no 2HG is detectable. In tumor-bearing rats, we detected the production of both 2HG and glutamate, and BAY-1436032-treatment led to a drop in 2HG and an increase in glutamate. Using HP [5-12C,1-13C]αKG we detected metabolism with an signal-to-noise ratio of 23 for 2HG and 17 for glutamate. Conclusions: Our findings point to the clinical potential of HP αKG, which recently received FDA investigational new drug approval for research, for noninvasive localized imaging of IDHmut status.

4.
PNAS Nexus ; 2(4): pgad115, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091547

ABSTRACT

The androgen receptor is a key regulator of prostate cancer and the principal target of current prostate cancer therapies collectively termed androgen deprivation therapies. Insensitivity to these drugs is a hallmark of progression to a terminal disease state termed castration-resistant prostate cancer. Therefore, novel therapeutic options that slow progression of castration-resistant prostate cancer and combine effectively with existing agents are in urgent need. We show that JG-98, an allosteric inhibitor of HSP70, re-sensitizes castration-resistant prostate cancer to androgen deprivation drugs by targeting mitochondrial HSP70 (HSPA9) to suppress aerobic respiration. Rather than impacting androgen receptor stability as previously described, JG-98's primary effect is inhibition of mitochondrial translation, leading to disruption of electron transport chain activity. Although functionally distinct from HSPA9 inhibition, direct inhibition of the electron transport chain with a complex I or II inhibitor creates a similar physiological state capable of re-sensitizing castration-resistant prostate cancer to androgen deprivation therapies. These data identify a significant role for HspA9 in mitochondrial ribosome function and highlight an actionable metabolic vulnerability of castration-resistant prostate cancer.

5.
Magn Reson Med ; 65(2): 557-63, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21264939

ABSTRACT

We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.The ratio of hyperpolarized (13) C label in tumor lactate compared to the maximum pyruvate signal in the blood vessels was decreased from 0.38 ± 0.16 to 0.23 ± 0.13, (a reduction of 34%) by 72 h following whole brain irradiation with 15 Gy.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Carbon Isotopes , Contrast Media , Glioma/diagnostic imaging , Glioma/radiotherapy , Magnetic Resonance Spectroscopy , Pyruvic Acid , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioma/metabolism , Lactic Acid/metabolism , Male , Neoplasm Transplantation , Pyruvic Acid/metabolism , Radionuclide Imaging , Rats , Rats, Wistar
6.
Prog Nucl Magn Reson Spectrosc ; 122: 23-41, 2021 02.
Article in English | MEDLINE | ID: mdl-33632416

ABSTRACT

Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Humans , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
7.
Cancers (Basel) ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575619

ABSTRACT

Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.

8.
Neuro Oncol ; 22(4): 480-492, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31665443

ABSTRACT

BACKGROUND: Early detection of increased aggressiveness of brain tumors is a major challenge in the field of neuro-oncology because of the inability of traditional imaging to uncover it. Isocitrate dehydrogenase (IDH)-mutant gliomas represent an ideal model system to study the molecular mechanisms associated with tumorigenicity because they appear indolent and non-glycolytic initially, but eventually a subset progresses toward secondary glioblastoma with a Warburg-like phenotype. The mechanisms and molecular features associated with this transformation are poorly understood. METHODS: We employed model systems for IDH1 mutant (IDH1mut) gliomas with different growth and proliferation rates in vivo and in vitro. We described the metabolome, transcriptome, and epigenome of these models in order to understand the link between their metabolism and the tumor biology. To verify whether this metabolic reprogramming occurs in the clinic, we analyzed data from The Cancer Genome Atlas. RESULTS: We reveal that the aggressive glioma models have lost DNA methylation in the promoters of glycolytic enzymes, especially lactate dehydrogenase A (LDHA), and have increased mRNA and metabolite levels compared with the indolent model. We find that the acquisition of the high glycolytic phenotype occurs at the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP)-high molecular subtype in patients and is associated with the worst outcome. CONCLUSION: We propose very early monitoring of lactate levels as a biomarker of metabolic reprogramming and tumor aggressiveness.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/genetics , DNA Methylation , Glioma/genetics , Guanine , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Phenotype
9.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32902275

ABSTRACT

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Mice , Structure-Activity Relationship , Xenograft Model Antitumor Assays
10.
J Mol Med (Berl) ; 97(9): 1231-1243, 2019 09.
Article in English | MEDLINE | ID: mdl-31053970

ABSTRACT

During infection, hepatocytes must undergo a reprioritization of metabolism, termed metabolic reprogramming. Hepatic metabolic reprogramming in response to infection begins within hours of infection, suggesting a mechanism closely linked to pathogen recognition. Following injection with polyinosinic:polycytidylic acid, a mimic of viral infection, a robust hepatic innate immune response could be seen involving the TNFα pathway at 2 h. Repeated doses led to the adoption of Warburg-like metabolism in the liver as determined by in vivo metabolic imaging, expression analyses, and metabolomics. Hepatic macrophages, Kupffer cells, were able to induce Warburg-like metabolism in hepatocytes in vitro via TNFα. Eliminating macrophages in vivo or blocking TNFα in vitro or in vivo resulted in abrogation of the metabolic phenotype, establishing an immune-metabolic axis in hepatic metabolic reprogramming. Overall, we suggest that macrophages, as early sensors of pathogens, instruct hepatocytes via TNFα to undergo metabolic reprogramming to cope with challenges to homeostasis initiated by infection. This work not only addresses a key component of end-organ physiology, but also raises questions about the side effects of biologics in the treatment of inflammatory diseases. KEY MESSAGES: • Hepatocytes develop Warburg-like metabolism in vivo during viral infection. • Macrophage TNFα promotes expression of glycolytic enzymes in hepatocytes. • Blocking this immune-metabolic axis abrogates Warburg-like metabolism in the liver. • Implications for patients being treated for inflammatory diseases with biologics.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Biological Products/pharmacology , Cell Line, Tumor , Hepatocytes/drug effects , Homeostasis/drug effects , Homeostasis/physiology , Humans , Immunity, Innate/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL
13.
Br J Pharmacol ; 165(4b): 1058-67, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21658022

ABSTRACT

BACKGROUND AND PURPOSE: Inflammation and reactive oxygen species are associated with the promotion of various cancers. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in cancer prevention treatments has been promising in numerous cancers. We report the evaluation of NSAIDs chemically modified by the addition of a redox-active nitroxide group. TEMPO-aspirin (TEMPO-ASA) and TEMPO-indomethacin (TEMPO-IND) were synthesized and evaluated in the lung cancer cell line A549. EXPERIMENTAL APPROACHES: We evaluated physico-chemical properties of TEMPO-ASA and TEMPO-IND by electron paramagnetic resonance and cyclic voltammetry. Superoxide dismutase-like properties was assayed by measuring cytochrome c reduction and anti-inflammatory effects were assayed by measuring production of prostaglandin E(2) (PGE(2) ) and leukotriene B(4) (LTB(4) ). MTT proliferation assay and clonogenic assay were evaluated in the A549 lung carcinoma cell line. Maximum tolerated doses (MTD) and acute ulcerogenic index were also evaluated in in vivo. KEY RESULTS: MTD were: TEMPO (140 mg·kg(-1) ), ASA (100 mg·kg(-1) ), indomethacin (5 mg·kg(-1) ), TEMPO-ASA (100 mg·kg(-1) ) and TEMPO-IND (40 mg·kg(-1) ). While TEMPO-ASA was as well tolerated as ASA, TEMPO-IND showed an eightfold improvement over indomethacin. TEMPO-IND showed markedly less gastric toxicity than the parent NSAID. Both TEMPO-ASA and TEMPO-IND inhibited production of PGE(2) and LTB(4) in A549 cells with maximum effects at 100 µg·mL(-1) or 10 µg·mL(-1) respectively. CONCLUSIONS AND IMPLICATIONS: The nitroxide-NSAIDs retained superoxide scavenging capacity of the parent nitroxide and anti-inflammatory effects, inhibiting cyclooxygenase and 5-lipoxygenase enzymes. These redox-modified NSAIDs might be potential drug candidates, as they exhibit the pharmacological properties of the parent NSAID with antioxidant activity decreasing NSAID-associated toxicity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Aspirin/pharmacology , Cyclic N-Oxides/pharmacology , Indomethacin/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Antioxidants/chemistry , Antioxidants/toxicity , Aspirin/chemistry , Aspirin/toxicity , Carrageenan , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/toxicity , Dinoprostone/metabolism , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Female , Humans , Indomethacin/chemistry , Indomethacin/toxicity , Leukotriene B4/metabolism , Mice , Mice, Nude , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL