Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 587(7832): 121-125, 2020 11.
Article in English | MEDLINE | ID: mdl-33087933

ABSTRACT

Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-ß (TGF-ß) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-ß signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-ß receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-ß-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-ß Trap (4T-Trap). Compared with a non-targeted TGF-ß-Trap, 4T-Trap selectively inhibited TH cell TGF-ß signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-ß signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy , Signal Transduction/drug effects , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Hypoxia , Cell Line, Tumor , Female , HEK293 Cells , Humans , Interleukin-4/immunology , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Male , Mice , Receptor, Transforming Growth Factor-beta Type II/chemistry , Receptor, Transforming Growth Factor-beta Type II/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transforming Growth Factor beta/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
2.
Pediatr Blood Cancer ; 71(9): e31181, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38967225

ABSTRACT

INTRODUCTION: Data on ovarian function in neuroblastoma survivors are limited. We sought to determine the prevalence of ovarian dysfunction in a cohort of high-risk neuroblastoma survivors and compare outcomes among survivors treated with and without autologous stem cell rescue (ASCR) preceded by myeloablative chemotherapy. METHODS: Retrospective review of female survivors of high-risk neuroblastoma ≥5 years from diagnosis, diagnosed between 1982 and 2014, and followed in a tertiary cancer center. Participants were divided into two groups: individuals treated with conventional chemotherapy ± radiation ("non-ASCR") (n = 32) or with chemotherapy ± radiation followed by myeloablative chemotherapy with ASCR ("ASCR") (n = 51). Ovarian dysfunction was defined as follicle-stimulating hormone ≥15 mU/mL, while premature ovarian insufficiency (POI) was defined as persistent ovarian dysfunction requiring hormone replacement therapy. Poisson models were used to determine prevalence ratios of ovarian dysfunction and POI. RESULTS: Among 83 females (median attained age: 19 years [range, 10-36]; median follow-up: 15 years [range, 7-36]), 49 (59%) had ovarian dysfunction, and 34 (41%) developed POI. Survivors treated with ASCR were 3.2-fold more likely to develop ovarian dysfunction (95% CI: 1.8-6.0; p < 0.001) and 4.5-fold more likely to develop POI (95% CI: 1.7-11.7; p = 0.002) when compared with those treated with conventional chemotherapy, after adjusting for attained age. Two participants in the non-ASCR group and six in the ASCR group achieved at least one spontaneous pregnancy. DISCUSSION: Ovarian dysfunction is prevalent in female high-risk neuroblastoma survivors, especially after ASCR. Longitudinal follow-up of larger cohorts is needed to inform counseling about the risk of impaired ovarian function after neuroblastoma therapy.


Subject(s)
Cancer Survivors , Neuroblastoma , Primary Ovarian Insufficiency , Humans , Female , Neuroblastoma/therapy , Adolescent , Retrospective Studies , Cancer Survivors/statistics & numerical data , Adult , Child , Young Adult , Primary Ovarian Insufficiency/epidemiology , Primary Ovarian Insufficiency/etiology , Primary Ovarian Insufficiency/chemically induced , Follow-Up Studies , Ovary/drug effects , Ovary/physiopathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Transplantation, Autologous
3.
Int J Cancer ; 152(2): 259-266, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35913764

ABSTRACT

Anti-GD2 monoclonal antibodies (mAb) improve the prognosis of high-risk neuroblastoma (HR-NB). Worldwide experience almost exclusively involves toddlers and older patients treated after multimodality or second-line therapies, that is, many months postdiagnosis. In contrast, at our center, infants received anti-GD2 mAbs because this immunotherapy started during or immediately after induction chemotherapy. We now report on the feasibility, safety, and long-term survival in this vulnerable age group. Thirty-three HR-NB patients were <19 months old when started on 3F8 (murine mAb; n = 21) or naxitamab (humanized-3F8; n = 12), with 30″ to 90″ intravenous infusions. Patients received analgesics and antihistamines. Common toxicities (pain, urticaria, cough) were manageable, allowing outpatient treatment. Capillary leak, posterior reversible encephalopathy syndrome, and mAb-related long-term toxicities did not occur. Two 3F8 cycles were aborted due to bradycardia (a preexisting condition) and asthmatic symptoms, respectively. One patient received ½ dose of Day 1 naxitamab because of hypotension; full doses were subsequently administered. Post-mAb treatments included chemotherapy, radiotherapy, and anti-NB vaccine. Among 3F8 patients, 17/21 are in complete remission off all treatment at 5.6+ to 24.1+ (median 13.4+) years from diagnosis. Among naxitamab patients, 10/12 remain relapse-free post-mAb at 1.7+ to 4.3+ (median 3.1+) years from diagnosis. Toxicity was similar with short outpatient infusions and matched that observed with these and other anti-GD2 mAbs in older patients. These findings were reassuring given that naxitamab is dosed >2.5× higher (~270 mg/m2 /cycle) than 3F8, dinutuximab, and dinutuximab beta (70-100 mg/m2 /cycle). HR-NB in infants proved to be highly curable.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Posterior Leukoencephalopathy Syndrome , Humans , Infant , Mice , Animals , Aged , Posterior Leukoencephalopathy Syndrome/chemically induced , Posterior Leukoencephalopathy Syndrome/drug therapy , Neoplasm Recurrence, Local/drug therapy , Antibodies, Monoclonal/adverse effects , Neuroblastoma/drug therapy , Immunotherapy , Immunologic Factors/therapeutic use , Antineoplastic Agents/therapeutic use
4.
Int J Cancer ; 153(12): 2019-2031, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37602920

ABSTRACT

Patients with stage 4N neuroblastoma (distant metastases limited to lymph nodes) stand out as virtually the only survivors of high-risk neuroblastoma (HR-NB) before myeloablative therapy (MAT) and immunotherapy with anti-GD2 monoclonal antibodies (mAbs) became standard. Because no report presents more recent results with 4N, we analyzed our large 4N experience. All 51 pediatric 4N patients (<18 years old) diagnosed 1985 to 2021 were reviewed. HR-NB included MYCN-nonamplified 4N diagnosed at age ≥18 months and MYCN-amplified 4N. Among 34 MYCN-nonamplified high-risk patients, 20 are relapse-free 1.5+ to 37.5+ (median 12.5+) years post-diagnosis, including 13 without prior MAT and 5 treated with little (1 cycle; n = 2) or no mAb (n = 3), while 14 patients (7 post-MAT, 8 post-mAbs) relapsed (all soft tissue). Of 15 MYCN-amplified 4N patients, 7 are relapse-free 2.1+ to 26.4+ (median 11.6+) years from the start of chemotherapy (all received mAbs; 3 underwent MAT) and 4 are in second remission 4.2+ to 21.8+ years postrelapse (all soft tissue). Statistical analyses showed no significant association of survival with either MAT or mAbs for MYCN-nonamplified HR-NB; small numbers prevented these analyses for MYCN-amplified patients. The two patients with intermediate-risk 4N (14-months-old) are relapse-free 7+ years postresection of primary tumors; distant disease spontaneously regressed. The natural history of 4N is marked by NB confined to soft tissue without early relapse in bones or bone marrow, where mAbs have proven efficacy. These findings plus curability without MAT, as seen elsewhere and at our center, support consideration of treatment reduction for MYCN-nonamplified 4N.


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Child , Humans , Infant , Adolescent , Prognosis , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Staging , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/pathology , Neuroblastoma/genetics , Neuroblastoma/therapy , Immunotherapy
5.
Pediatr Blood Cancer ; 70(2): e30075, 2023 02.
Article in English | MEDLINE | ID: mdl-36349892

ABSTRACT

BACKGROUND: In high-risk neuroblastoma, multimodality therapy including craniospinal irradiation (CSI) is effective for central nervous system (CNS) relapse. Management of post-CSI CNS relapse is not clearly defined. PROCEDURE: Pediatric patients with neuroblastoma treated with CSI between 2000 and 2019 were identified. Treatment of initial CNS disease (e.g., CSI, intraventricular compartmental radioimmunotherapy [cRIT] with 131 I-monoclonal antibodies targeting GD2 or B7H3) and management of post-CSI CNS relapse ("second CNS relapse") were characterized. Cox proportional hazards models to evaluate factors associated with third CNS relapse and overall survival (OS) were used. RESULTS: Of 128 patients (65% male, median age 4 years), 19 (15%) received CSI with protons and 115 (90%) had a boost. Most (103, 81%) received cRIT, associated with improved OS (hazard ratio [HR] 0.3, 95% confidence interval [CI]: 0.1-0.5, p < .001). Forty (31%) developed a second CNS relapse, associated with worse OS (1-year OS 32.5%, 95% CI: 19-47; HR 3.8; 95% CI: 2.4-6.0, p < .001), and more likely if the leptomeninges were initially involved (HR 2.5, 95% CI: 1.3-4.9, p = .006). Median time to second CNS relapse was 6.8 months and 51% occurred outside the CSI boost field. Twenty-five (63%) patients underwent reirradiation, most peri-operatively (18, 45%) with focal hypofractionation. Eight (20%) patients with second CNS relapse received cRIT, associated with improved OS (HR 0.1; 95% CI: 0.1-0.4, p < .001). CONCLUSIONS: CNS relapse after CSI for neuroblastoma portends a poor prognosis. Surgery with hypofractionated radiotherapy was the most common treatment. Acknowledging the potential for selection bias, receipt of cRIT both at first and second CNS relapse was associated with improved survival. This finding necessitates further investigation.


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Child , Humans , Male , Child, Preschool , Female , Neoplasm Recurrence, Local/therapy , Combined Modality Therapy , Radioimmunotherapy , Central Nervous System , Neuroblastoma/radiotherapy
6.
J Immunol ; 207(10): 2534-2544, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34625521

ABSTRACT

Human CMV (HCMV) is a ubiquitous pathogen that indelibly shapes the NK cell repertoire. Using transcriptomic, epigenomic, and proteomic approaches to evaluate peripheral blood NK cells from healthy human volunteers, we find that prior HCMV infection promotes NK cells with a T cell-like gene profile, including the canonical markers CD3ε, CD5, and CD8ß, as well as the T cell lineage-commitment transcription factor Bcl11b. Although Bcl11b expression is upregulated during NK maturation from CD56bright to CD56dim, we find a Bcl11b-mediated signature at the protein level for FcεRIγ, PLZF, IL-2Rß, CD3γ, CD3δ, and CD3ε in later-stage, HCMV-induced NK cells. BCL11B is targeted by Notch signaling in T cell development, and culture of NK cells with Notch ligand increases cytoplasmic CD3ε expression. The Bcl11b-mediated gain of CD3ε, physically associated with CD16 signaling molecules Lck and CD247 in NK cells is correlated with increased Ab-dependent effector function, including against HCMV-infected cells, identifying a potential mechanism for their prevalence in HCMV-infected individuals and their prospective clinical use in Ab-based therapies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Repressor Proteins/immunology , Tumor Suppressor Proteins/immunology , Animals , CD3 Complex/immunology , Humans , Mice , Mice, Transgenic , Transcriptome
7.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569894

ABSTRACT

The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , T-Lymphocytes , Ecosystem , Neoplasm Recurrence, Local , Immunotherapy , Osteosarcoma/genetics , Bone Neoplasms/genetics , Tumor Microenvironment , Immunotherapy, Adoptive
8.
Pediatr Blood Cancer ; 69(1): e29344, 2022 01.
Article in English | MEDLINE | ID: mdl-34550633

ABSTRACT

Twelvepatients without therapy-related leukemia were studied after completing TOP2 poison chemotherapy in a high-risk neuroblastoma regimen. One patient harbored an inv(11) that was a KMT2A rearrangement. The KMT2A-MAML2 transcript was expressed at low level. The patient was prospectively followed. The inv(11) was undetectable in ensuing samples. Leukemia never developed after a 12.8-year follow-up period. Enriched etoposide-induced TOP2A cleavage in the relevant MAML2 genomic region supports a TOP2A DNA damage mechanism. After completing TOP2 poison chemotherapies, covert KMT2A-R clones may occur in a small minority of patients; however, not all KMT2A rearrangements herald a therapy-related leukemia diagnosis.


Subject(s)
Histone-Lysine N-Methyltransferase , Leukemia , Myeloid-Lymphoid Leukemia Protein , Neuroblastoma , Trans-Activators , Etoposide/administration & dosage , Follow-Up Studies , Gene Rearrangement , Humans , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Transcription Factors/genetics
9.
Bioconjug Chem ; 32(4): 649-654, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33819023

ABSTRACT

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.


Subject(s)
Cell Engineering , Haptens , Radioimmunotherapy/methods , Radiopharmaceuticals/chemistry , Animals , Autoradiography , HEK293 Cells , Humans , Mice , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
10.
Eur J Nucl Med Mol Imaging ; 48(4): 1166-1177, 2021 04.
Article in English | MEDLINE | ID: mdl-33047248

ABSTRACT

PURPOSE: Radioimmunotherapy (RIT) delivered through the cerebrospinal fluid (CSF) has been shown to be a safe and promising treatment for leptomeningeal metastases. Pharmacokinetic models for intraOmmaya antiGD2 monoclonal antibody 131I-3F8 have been proposed to improve therapeutic effect while minimizing radiation toxicity. In this study, we now apply pharmacokinetic modeling to intraOmmaya 131I-omburtamab (8H9), an antiB7-H3 antibody which has shown promise in RIT of leptomeningeal metastases. METHODS: Serial CSF samples were collected and radioassayed from 61 patients undergoing a total of 177 intraOmmaya administrations of 131I-omburtamab for leptomeningeal malignancy. A two-compartment pharmacokinetic model with 12 differential equations was constructed and fitted to the radioactivity measurements of CSF samples collected from patients. The model was used to improve anti-tumor dose while reducing off-target toxicity. Mathematical endpoints were (a) the area under the concentration curve (AUC) of the tumor-bound antibody, AUC [CIAR(t)], (b) the AUC of the unbound "harmful" antibody, AUC [CIA(t)], and (c) the therapeutic index, AUC [CIAR(t)] ÷ AUC [CIA(t)]. RESULTS: The model fit CSF radioactivity data well (mean R = 96.4%). The median immunoreactivity of 131I-omburtamab matched literature values at 69.1%. Off-target toxicity (AUC [CIA(t)]) was predicted to increase more quickly than AUC [CIAR(t)] as a function of 131I-omburtamab dose, but the balance of therapeutic index and AUC [CIAR(t)] remained favorable over a broad range of administered doses (0.48-1.40 mg or 881-2592 MBq). While antitumor dose and therapeutic index increased with antigen density, the optimal administered dose did not. Dose fractionization into two separate injections increased therapeutic index by 38%, and splitting into 5 injections by 82%. Increasing antibody immunoreactivity to 100% only increased therapeutic index by 17.5%. CONCLUSION: The 2-compartmental pharmacokinetic model when applied to intraOmmaya 131I-omburtamab yielded both intuitive and nonintuitive therapeutic predictions. The potential advantage of further dose fractionization warrants clinical validation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov , NCT00089245.


Subject(s)
Iodine Radioisotopes , Radioimmunotherapy , Antibodies, Monoclonal, Murine-Derived , Humans , Iodine Radioisotopes/therapeutic use , Therapeutic Index
11.
Pediatr Blood Cancer ; 68(7): e28971, 2021 07.
Article in English | MEDLINE | ID: mdl-33844437

ABSTRACT

BACKGROUND: Humanized 3F8-bispecific antibody (hu3F8-BsAb) using the IgG(L)-scFv format (where scFv is single-chain variable fragment), where the anti-CD3 huOKT3 scFv is fused with the carboxyl end of the hu3F8 light chain, has potent antitumor cytotoxicity against GD2(+) tumors. To overcome the insufficient number and function of T cells in cancer patients, they can be rejuvenated and expanded ex vivo before arming with hu3F8-BsAb for adoptive transfer, potentially reducing toxic side effects from direct BsAb administration. PROCEDURE: T cells from normal volunteers were expanded and activated ex vivo using CD3/CD28 beads for 8 days. Activated T cells (ATCs) were harvested and co-incubated with a Good Manufacturing Practice grade hu3F8-BsAb at room temperature for 20 min. These armed ATCs were tested for cytotoxicity in vitro and in vivo against human GD2(+) cell lines and patient-derived xenografts in BALB-Rag2-/- IL-2R-γc-KO mice. RESULTS: Hu3F8-BsAb armed ATCs showed robust antigen-specific tumor cytotoxicity against GD2(+) tumors in vitro. In vivo, T cells armed with hu3F8-BsAb were highly cytotoxic against GD2(+) melanoma and neuroblastoma xenografts in mice, accompanied by T-cell infiltration without significant side effects. Only zeptomole (10-21 ) quantities of BsAb per T cell was required for maximal antitumor effects. Tumor response was a function of T-cell dose. CONCLUSION: BsAb armed T cells may have clinical utility as the next generation of cytotherapy combined with recombinant BsAb against human tumors for both adult and pediatrics, if autologous T cells can be activated and expanded ex vivo.


Subject(s)
T-Lymphocytes , Animals , Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , Child , Glycolipids , Humans , Melanoma , Mice , Neuroblastoma
12.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008849

ABSTRACT

Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin ß1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin ß1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin ß1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin ß1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin ß1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin ß1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.


Subject(s)
Gangliosides/metabolism , Integrins/metabolism , Melanoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen Type I/metabolism , Gangliosides/immunology , Humans , Integrin beta1/metabolism , Mass Spectrometry , Membrane Microdomains/metabolism , Mice , Phenotype , Phosphotyrosine/metabolism , Signal Transduction/drug effects
13.
Bioconjug Chem ; 31(3): 501-506, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31891487

ABSTRACT

Clearing agents (CAs) can rapidly remove nonlocalized targeting biomolecules from circulation for hepatic catabolism, thereby enhancing the therapeutic index (TI), especially for blood (marrow), of the subsequently administered radioisotope in any multistep pretargeting strategy. Herein we describe the synthesis and in vivo evaluation of a fully synthetic glycodendrimer-based CA for DOTA-based pretargeted radioimmunotherapy (DOTA-PRIT). The novel dendron-CA consists of a nonradioactive yttrium-DOTA-Bn molecule attached via a linker to a glycodendron displaying 16 terminal α-thio-N-acetylgalactosamine (α-SGalNAc) units (CCA α-16-DOTA-Y3+; molecular weight: 9059 Da). Pretargeting [177Lu]LuDOTA-Bn with CCA α-16-DOTA-Y3+ to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]LuDOTA-Bn for blood, tumor, liver, spleen, and kidneys of 11.7, 468, 9.97, 5.49, and 13.3 cGy/MBq, respectively. Tumor-to-normal tissues absorbed-dose ratios (i.e., TIs) ranged from 40 (e.g., for blood and kidney) to about 550 for stomach.


Subject(s)
Acetylgalactosamine/chemistry , Dendrimers/chemistry , Haptens/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Radioimmunotherapy/methods , Animals , Biotin/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Humans , Immunoconjugates/metabolism , Immunoconjugates/pharmacokinetics , Mice , Tissue Distribution , Xenograft Model Antitumor Assays
14.
Pediatr Blood Cancer ; 67(9): e28364, 2020 09.
Article in English | MEDLINE | ID: mdl-32608559

ABSTRACT

PURPOSE: In patients with high-risk neuroblastoma, there is an increased recognition of relapse in the central nervous system (CNS). Craniospinal irradiation (CSI) has been an effective treatment but carries significant long-term complications. It is unclear whether reducing the CSI dose from 21 to 18 Gy can achieve similar CNS tumor control. PATIENTS AND METHODS: A retrospective review of pediatric patients with CNS-relapsed neuroblastoma treated with CSI and boost to parenchymal lesions between 2003 and 2019 was performed. The goal was to assess CNS control comparing 18 Gy and 21 Gy regimens. RESULTS: Ninety-four patients with CNS-relapsed neuroblastoma were treated with CSI followed by intraventricular compartmental radioimmunotherapy. Median age at the time of CNS disease was 4 years (range 1-13 years). Forty-one patients (44%) received 21 Gy CSI prior to an institutional decision to lower the dose; 53 patients (56%) received 18 Gy CSI. Seventy-nine patients (84%) received additional boosts. With a median follow up of 4.1 years for surviving patients, 2-year CNS relapse-free survival was 74% for 18 Gy group versus 77% for 21 Gy group, and 5-year CNS relapse-free survival was 66% for 18 Gy versus 72% for 21 Gy group, respectively (P = .40). Five-year overall survival rate was 43% in 18 Gy group versus 47% in 21 Gy group (P = .72). CONCLUSION: For patients with CNS-relapsed neuroblastoma, CNS disease control is comparable between 18 Gy and 21 Gy CSI dose regimens, in conjunction with radioimmunotherapy and CNS penetrating chemotherapy. More than 65% of the patients remain CNS disease free after 5 years. The findings support 18 Gy as the new standard CSI dose for CNS-relapsed neuroblastoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/therapy , Craniospinal Irradiation/methods , Neuroblastoma/radiotherapy , Radioimmunotherapy/methods , Adolescent , Brain Neoplasms/secondary , Child , Child, Preschool , Combined Modality Therapy , Craniospinal Irradiation/adverse effects , Female , Humans , Infant , Male , Proton Therapy/methods , Radiotherapy Dosage , Retrospective Studies , Survival Rate , Treatment Outcome
15.
J Neurooncol ; 143(1): 101-106, 2019 May.
Article in English | MEDLINE | ID: mdl-30879172

ABSTRACT

PURPOSE: We explored the use of intraventricular 131I-Omburtamab targeting B7-H3 in patients with ETMR. METHODS: Patients were enrolled in an IRB approved, phase 1, 3 + 3 dose escalation trial. Patients with CNS disease expressing the antibody target antigen B7-H3 were eligible. We report on a cohort of three patients with ETMR who were enrolled on the study. Three symptomatic children (ages 14 months, 3 and 3.5 years) had large parietal masses confirmed to be B7-H3-reactive ETMR. Patients received 2 mCi 131I-Omburtamab as a tracer followed by one or two therapeutic 131I-Omburtamab injections. Dosimetry was based on serial CSF, blood samplings and region of interest (ROI) on nuclear scans. Brain and spine MRIs and CSF cytology were done at baseline, 5 weeks after 131I-Omburtamab, and approximately every 3 months thereafter. Acute toxicities and survival were noted. RESULTS: Patients received surgery, focal radiation, and high dose chemotherapy. Patients 1 and 2 received 131I-Omburtamab (80 and 53 mCi, respectively). Patient 3 had a local recurrence prior to 131I-Omburtamab treated with surgery, external beam radiation, chemotherapy, then 131I-Omburtamab (36 mCi). 131I-Omburtamab was well-tolerated. Mean dose delivered by 131I-Omburtamab was 68.4 cGy/mCi to CSF and 1.95 cGy/mCi to blood. Mean ROI doses were 230.4 (ventricular) and 58.2 (spinal) cGy/mCi. Patients 1 and 2 remain in remission 6.8 years and 2.3 years after diagnosis, respectively; patient 3 died of progressive disease 7 months after therapy (2 years after diagnosis). CONCLUSIONS: 131I-Omburtamab appears safe with favorable dosimetry therapeutic index. When used as consolidation following surgery and chemoradiation therapy, 131I-Omburtamab may have therapeutic benefit for patients with ETMR.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antibodies, Monoclonal/therapeutic use , Central Nervous System Neoplasms/radiotherapy , Iodine Radioisotopes/therapeutic use , Neoplasms, Germ Cell and Embryonal/radiotherapy , Antibodies, Monoclonal/cerebrospinal fluid , Antibodies, Monoclonal, Murine-Derived/cerebrospinal fluid , Brain/diagnostic imaging , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/diagnostic imaging , Child, Preschool , Fatal Outcome , Female , Humans , Infant , Injections, Intraventricular , Iodine Radioisotopes/cerebrospinal fluid , Male , Neoplasms, Germ Cell and Embryonal/cerebrospinal fluid , Neoplasms, Germ Cell and Embryonal/diagnostic imaging , Radioimmunotherapy , Radiometry , Spinal Cord/diagnostic imaging
16.
Lancet Oncol ; 19(8): 1040-1050, 2018 08.
Article in English | MEDLINE | ID: mdl-29914796

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine glioma is one of the deadliest central nervous system tumours of childhood, with a median overall survival of less than 12 months. Convection-enhanced delivery has been proposed as a means to efficiently deliver therapeutic agents directly into the brainstem while minimising systemic exposure and associated toxic effects. We did this study to evaluate the safety of convection-enhanced delivery of a radioimmunotherapy agent targeting the glioma-associated B7-H3 antigen in children with diffuse intrinsic pontine glioma. METHODS: We did a phase 1, single-arm, single-centre, dose-escalation study at the Memorial Sloan Kettering Cancer Center (New York, NY, USA). Eligible patients were aged 3-21 years and had diffuse intrinsic pontine glioma as diagnosed by consensus of a multidisciplinary paediatric neuro-oncology team; a Lansky (patients <16 years of age) or Karnofsky (patients ≥16 years) performance score of at least 50 at study entry; a minimum weight of 8 kg; and had completed external beam radiation therapy (54·0-59·4 Gy at 1·8 Gy per fraction over 30-33 fractions) at least 4 weeks but no more than 14 weeks before enrolment. Seven dose-escalation cohorts were planned based on standard 3 + 3 rules: patients received a single infusion of 9·25, 18·5, 27·75, 37, 92·5, 120·25, or 148 MBq, respectively, at a concentration of about 37 MBq/mL by convection-enhanced delivery of the radiolabelled antibody [124I]-8H9. The primary endpoint was identification of the maximum tolerated dose. The analysis of the primary endpoint was done in the per-protocol population (patients who received the full planned dose of treatment), and all patients who received any dose of study treatment were included in the safety analysis. This study is registered with ClinicalTrials.gov, number NCT01502917, and is ongoing with an expanded cohort. FINDINGS: From April 5, 2012, to Oct 8, 2016, 28 children were enrolled and treated in the trial, of whom 25 were evaluable for the primary endpoint. The maximum tolerated dose was not reached as no dose-limiting toxicities were observed. One (4%) of 28 patients had treatment-related transient grade 3 hemiparesis and one (4%) had grade 3 skin infection. No treatment-related grade 4 adverse events or deaths occurred. Estimated volumes of distribution (Vd) were linearly dependent on volumes of infusion (Vi) and ranged from 1·5 to 20·1 cm3, with a mean Vd/Vi ratio of 3·4 (SD 1·2). The mean lesion absorbed dose was 0·39 Gy/MBq 124I (SD 0·20). Systemic exposure was negligible, with an average lesion-to-whole body ratio of radiation absorbed dose higher than 1200. INTERPRETATION: Convection-enhanced delivery in the brainstem of children with diffuse intrinsic pontine glioma who have previously received radiation therapy seems to be a rational and safe therapeutic strategy. PET-based dosimetry of the radiolabelled antibody [124I]-8H9 validated the principle of using convection-enhanced delivery in the brain to achieve high intra-lesional dosing with negligible systemic exposure. This therapeutic strategy warrants further development for children with diffuse intrinsic pontine glioma. FUNDING: National Institutes of Health, The Dana Foundation, The Cure Starts Now, Solving Kids' Cancer, The Lyla Nsouli Foundation, Cookies for Kids' Cancer, The Cristian Rivera Foundation, Battle for a Cure, Cole Foundation, Meryl & Charles Witmer Charitable Foundation, Tuesdays with Mitch Charitable Foundation, and Memorial Sloan Kettering Cancer Center.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Brain Stem Neoplasms/drug therapy , Glioma/drug therapy , Radioimmunotherapy/methods , Antibodies, Monoclonal, Murine-Derived , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Infusions, Intraventricular , Iodine Radioisotopes/administration & dosage , Male
17.
Int J Cancer ; 143(5): 1249-1258, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29574715

ABSTRACT

Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Gangliosides/immunology , Immunoglobulin G/therapeutic use , Immunotherapy , Neoplasm Recurrence, Local/therapy , Neuroblastoma/therapy , Adolescent , Adult , Aged , Antibodies, Monoclonal, Murine-Derived , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Neuroblastoma/immunology , Neuroblastoma/pathology , Survival Rate , Treatment Outcome , Young Adult
18.
Pediatr Blood Cancer ; 65(7): e27009, 2018 07.
Article in English | MEDLINE | ID: mdl-29469198

ABSTRACT

BACKGROUND: Locoregional failure is common after subtotal resection in high-risk neuroblastoma. Although a dose of 21 Gy radiation therapy (RT) is standard for treatment of high-risk neuroblastoma after gross total resection, the dose needed for local control of patients with gross residual disease at the time of RT is unknown. We sought to evaluate local control after 21-36 Gy RT in patients with high-risk neuroblastoma undergoing subtotal resection. METHODS: All patients with high-risk neuroblastoma who received RT to their primary site from 2000 to 2016 were reviewed. Of the 331 patients who received consolidative RT to their primary site, 19 (5.7%) underwent subtotal resection and were included in our analysis. Local failure (LF) was correlated with biologic prognostic factors and dose of RT. RESULTS: Median follow-up among surviving patients was 6.0 years. Median RT dose was 25 Gy (range, 21 Gy-36 Gy). The 5-year cumulative incidence of LF among all patients was 17.2%. LF at 5 years was 30% in those who received <30 Gy versus 0% in those who received 30-36 Gy (P = 0.12). There was a trend towards improved local control in patients with tumor size ≤10 cm at diagnosis (P = 0.12). The 5-year event-free and overall survival were 44.9% and 68.7%, respectively. CONCLUSION: After subtotal resection, patients who received less than 30 Gy had poor local control. Doses of 30-36 Gy are likely needed for optimal control of gross residual disease at the time of consolidative RT in high-risk neuroblastoma.


Subject(s)
Neoplasm Recurrence, Local/radiotherapy , Neoplasm, Residual/radiotherapy , Neuroblastoma/radiotherapy , Adolescent , Adult , Child , Child, Preschool , Dose Fractionation, Radiation , Female , Follow-Up Studies , Gamma Rays , Humans , Infant , Male , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual/pathology , Neuroblastoma/pathology , Prognosis , Retrospective Studies , Survival Rate , Young Adult
19.
Pediatr Blood Cancer ; 65(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-28940863

ABSTRACT

BACKGROUND: High-risk and recurrent medulloblastoma (MB) is associated with significant mortality. The murine monoclonal antibody 3F8 targets the cell-surface disialoganglioside GD2 on MB. We tested the efficacy, toxicity, and dosimetry of compartmental radioimmunotherapy (cRIT) with intraventricular 131 I-labeled 3F8 in patients with MB on a phase II clinical trial. METHODS: Patients with histopathologically confirmed high-risk or recurrent MB were eligible for cRIT. After determining adequate cerebrospinal fluid (CSF) flow, patients received 2 mCi (where Ci is Curie) 124 I-3F8 or 131 I-3F8 with nuclear imaging for dosimetry, followed by up to four therapeutic (10 mCi/dose) 131 I-3F8 injections. Dosimetry estimates were based on serial CSF and blood samplings over 48 hr plus region-of-interest analyses on serial imaging scans. Disease evaluation included pre- and posttherapy brain/spine magnetic resonance imaging approximately every 3 months for the first year after treatment, and every 6-12 months thereafter. RESULTS: Forty-three patients received a total of 167 injections; 42 patients were evaluable for outcome. No treatment-related deaths occurred. Toxicities related to drug administration included acute bradycardia with somnolence, headache, fatigue, and CSF pleocytosis consistent with chemical meningitis and dystonic reaction. Total CSF absorbed dose was 1,453 cGy (where Gy is Gray; 350.0-2,784). Median overall survival from first dose of cRIT was 24.9 months (95% confidence interval [CI]:16.3-55.8). Patients treated in radiographic and cytologic remission were at a lower risk of death compared to patients with radiographically measurable disease (hazard ratio: 0.40, 95% CI: 0.18-0.88, P = 0.024). CONCLUSIONS: cRIT with 131 I-3F8 is safe, has favorable dosimetry to CSF, and when added to salvage therapy using conventional modalities, may have clinical utility in maintaining remission in high-risk or recurrent MB.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Cerebellar Neoplasms/radiotherapy , Iodine Radioisotopes/administration & dosage , Medulloblastoma/radiotherapy , Radioimmunotherapy , Adolescent , Adult , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/mortality , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Infant , Injections, Intraventricular , Male , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/diagnostic imaging , Medulloblastoma/mortality , Survival Rate
20.
Int J Cancer ; 140(2): 480-484, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27649927

ABSTRACT

AKT plays a pivotal role in driving the malignant phenotype of many cancers, including high-risk neuroblastoma (HR-NB). AKT signaling, however, is active in normal tissues, raising concern about excessive toxicity from its suppression. The oral AKT inhibitor perifosine showed tolerable toxicity in adults and in our phase I trial in children with solid tumors (clinicaltrials.gov NCT00776867). We now report on the HR-NB experience. HR-NB patients received perifosine 50-75 mg m-2  day-1 after a loading dose of 100-200 mg m-2 on day 1, and continued on study until progressive disease. The 27 HR-NB patients included three treated for primary refractory disease and 24 with disease resistant to salvage therapy after 1-5 (median 2) relapses; only one had MYCN-amplified HR-NB. Pharmacokinetic studies showed µM concentrations consistent with cytotoxic levels in preclinical models. Nine patients (all MYCN-non-amplified) remained progression-free through 43+ to 74+ (median 54+) months from study entry, including the sole patient to show a complete response and eight patients who had persistence of abnormal 123 I-metaiodobenzylguanidine skeletal uptake but never developed progressive disease. Toxicity was negligible in all 27 patients, even with the prolonged treatment (11-62 months, median 38) in the nine long-term progression-free survivors. The clinical findings (i) confirm the safety of therapeutic serum levels of an AKT inhibitor in children; (ii) support perifosine for MYCN-non-amplified HR-NB as monotherapy after completion of standard treatment or combined with other agents (based on preclinical studies) to maximize antitumor effects; and (iii) highlight the welcome possibility that refractory or relapsed MYCN-non-amplified HR-NB is potentially curable.


Subject(s)
Antineoplastic Agents/therapeutic use , Neuroblastoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylcholine/analogs & derivatives , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Adolescent , Adult , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Neuroblastoma/metabolism , Phosphorylcholine/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL