Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mod Pathol ; 36(8): 100190, 2023 08.
Article in English | MEDLINE | ID: mdl-37080394

ABSTRACT

Squamous cell carcinoma is the most common head and neck malignancy arising from the oral mucosa and the skin. The histologic and immunohistochemical features of oral squamous cell carcinoma (OSCC) and head and neck cutaneous squamous cell carcinoma (HNcSCC) are similar, making it difficult to identify the primary site in cases of metastases. With the advent of immunotherapy, reliable distinction of OSCC and HNcSCC at metastatic sites has important treatment and prognostic implications. Here, we investigate and compare the genomic landscape of OSCC and HNcSCC to identify diagnostically useful biomarkers. Whole-genome sequencing data from 57 OSCC and 41 HNcSCC patients were obtained for tumor and matched normal samples. Tumor mutation burden (TMB), Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, frequent chromosomal alterations, somatic single nucleotide, and copy number variations were analyzed. The median TMB of 3.75 in primary OSCC was significantly lower (P < .001) than that of 147.51 mutations/Mb in primary HNcSCC. The COSMIC mutation signatures were significantly different (P < .001) between OSCC and HNcSCC. OSCC showed COSMIC single-base substitution (SBS) mutation signature 1 and AID/APOBEC activity-associated signature 2 and/or 13. All except 1 HNcSCC from hair-bearing scalp showed UV damage-associated COSMIC SBS mutation signature 7. Both OSCC and HNcSCC demonstrated a predominance of tumor suppressor gene mutations, predominantly TP53. The most frequently mutated oncogenes were PIK3CA and MUC4 in OSCC and HNcSCC, respectively. The metastases of OSCC and HNcSCC demonstrated TMB and COSMIC SBS mutation signatures similar to their primary counterparts. The combination of high TMB and UV signature in a metastatic keratinizing squamous cell carcinoma suggests HNcSCC as the primary site and may also facilitate decisions regarding immunotherapy. HNcSCC and OSCC show distinct genomic profiles despite histologic and immunohistochemical similarities. Their genomic characteristics may underlie differences in behavior and guide treatment decisions in recurrent and metastatic settings.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , DNA Copy Number Variations , Mouth Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Head and Neck Neoplasms/genetics , Mutation , Genomics , Biomarkers, Tumor/genetics
2.
Tissue Eng Part C Methods ; 30(4): 159-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368556

ABSTRACT

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support in vivo. However, few preclinical models can simulate in vivo human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of in vivo osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. De novo bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.


Subject(s)
Bone Substitutes , Periosteum , Sheep , Animals , Humans , Periosteum/pathology , Periosteum/physiology , Periosteum/surgery , Bone Regeneration/physiology , Osteogenesis/physiology , Biocompatible Materials , Bioreactors
3.
Pathology ; 55(4): 456-465, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37055331

ABSTRACT

Adenoid cystic carcinoma (ACC) is one of the most common primary salivary gland cancers. ACC has several benign and malignant mimics amongst salivary gland neoplasms. An accurate diagnosis of ACC is essential for optimal management of the patients and their follow-up. Upregulation of MYB has been described in 85-90% of ACC, but not in other salivary gland neoplasms. In ACC, MYB upregulation can occur as a result of a genetic rearrangement t(6;9) (q22-23;p23-24), MYB copy number variation (CNV), or enhancer hijacking of MYB. All mechanisms of MYB upregulation result in increased RNA transcription that can be detected using RNA in situ hybridisation (ISH) methods. In this study, utilising 138 primary salivary gland neoplasms including 78 ACC, we evaluate the diagnostic utility of MYB RNA ISH for distinguishing ACC from other primary salivary gland neoplasms with a prominent cribriform architecture including pleomorphic adenoma, basal cell adenoma, basal cell adenocarcinoma, epithelial myoepithelial carcinoma, and polymorphous adenocarcinoma. Fluorescent in situ hybridisation and next generation sequencing were also performed to evaluate the sensitivity and specificity of RNA ISH for detecting increased MYB RNA when MYB gene alterations were present. Detection of MYB RNA has 92.3% sensitivity and 98.2% specificity for a diagnosis of ACC amongst salivary gland neoplasms. The sensitivity of MYB RNA detection by ISH (92.3%) is significantly higher than that of the FISH MYB break-apart probe (42%) for ACC. Next generation sequencing did not demonstrate MYB alterations in cases that lacked MYB RNA overexpression indicating high sensitivity of MYB RNA ISH for detecting MYB gene alterations. The possibility that the sensitivity may be higher in clinical practice with contemporary samples as compared with older retrospective tissue samples with RNA degradation is not entirely excluded. In addition to the high sensitivity and specificity, MYB RNA testing can be performed using standard IHC platforms and protocols and evaluated using brightfield microscopy making it a time and cost-efficient diagnostic tool in routine clinical practice.


Subject(s)
Adenocarcinoma , Carcinoma, Adenoid Cystic , Salivary Gland Neoplasms , Humans , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Adenoid Cystic/diagnosis , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , DNA Copy Number Variations , Retrospective Studies , Salivary Gland Neoplasms/diagnosis , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL