Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Glob Chang Biol ; 29(16): 4543-4555, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37198735

ABSTRACT

Shifts in plant phenology regulate ecosystem structure and function, which feeds back to the climate system. However, drivers for the peak of growing season (POS) in seasonal dynamics of terrestrial ecosystems remain unclear. Here, spatial-temporal patterns of POS dynamics were analyzed by solar-induced chlorophyll fluorescence (SIF) and vegetation index in the Northern Hemisphere over the past two decades from 2001 to 2020. Overall, a slow advanced POS was observed in the Northern Hemisphere, while a delayed POS distributed mainly in northeastern North America. Trends of POS were driven by the start of growing season (SOS) rather than pre-POS climate both at hemisphere and biome scale. The effect of SOS on the trends in POS was the strongest in shrublands while the weakest in evergreen broad-leaved forest. These findings highlight the crucial role of biological rhythms rather than climatic factors in exploring seasonal carbon dynamics and global carbon balance.


Subject(s)
Climate , Ecosystem , Seasons , Forests , Climate Change , Carbon
2.
Glob Chang Biol ; 20(10): 3229-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24771521

ABSTRACT

Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.


Subject(s)
Carbon Cycle/physiology , Climate Change , Droughts , Hot Temperature , Soil Microbiology , Acclimatization , Autotrophic Processes , Ecosystem , Heterotrophic Processes
3.
Ecol Evol ; 14(4): e11297, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623520

ABSTRACT

Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.

4.
Sci Total Environ ; 929: 172725, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663610

ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) has been found to be robustly correlated with gross primary productivity (GPP) based on satellite datasets. However, it is unclear whether nitrogen affects the relationship between SIF and GPP at the canopy scale. Here, seasonal dynamics of SIF, GPP, vegetation physiology and canopy structure were measured synchronously throughout growing season along the nitrogen gradient in a rice paddy of China's subtropical region. Our results found that the slope of SIF against GPP was not constant, showing an increasing trend from low to high nitrogen levels. The sensitivity of SIF to nitrogen was larger than that of GPP. Nitrogen enrichment versus deficiency had asymmetrical effects on the SIF-GPP relationship. The steeper slope of SIF against GPP under high nitrogen level was mainly attributed to the promotion of canopy fluorescence efficiency (ΦF) rather than the variation of canopy fluorescence escape probability (Fesc). These results emphasize the vital role of nitrogen in exploring mechanisms underlying SIF dynamics and decoding GPP from SIF.


Subject(s)
Chlorophyll , Nitrogen , China , Fluorescence , Sunlight , Oryza/physiology , Oryza/growth & development , Photosynthesis , Environmental Monitoring
5.
J Plant Physiol ; 286: 154004, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209459

ABSTRACT

Leaf resource-use efficiencies are key indicators of plant adaptability to climate change, as they depend on both photosynthetic carbon assimilation and available resources. However, accurately quantifying the response of the coupled carbon and water cycles is challenging due to the canopy vertical variability in resource-use efficiencies, which introduces greater uncertainty into the calculations. Here we experimented to ascertain the vertical variations of leaf resource-use efficiencies along three canopy gradients of coniferous (Pinus elliottii Engelmann.) and broad-leaved (Schima Superba Gardn & Champ.) forests over one year in the subtropical region of China. The efficiency of water (WUE), and nitrogen (NUE) showed higher values in the top canopy level for the two species. The maximum efficiency of light (LUE) occurred in the bottom canopy level for both species. The impact of photosynthetic photon flux density (PPFD), leaf temperature (Tleaf), and vapor pressure deficit (VPD) on leaf resource-use efficiencies varied with canopy gradients in slash pine and schima superba. We also observed a trade-off between NUE and LUE for slash pine and between NUE and WUE for schima superba. Moreover, the variation in the correlation between LUE and WUE indicated a change in resource-use strategies for slash pine. These results emphasize the significance of vertical variations in resource-use efficiencies to enhance the prediction of future carbon-water dynamics in the subtropical forest.


Subject(s)
Forests , Pinus , Plant Leaves , Nitrogen , Trees , Carbon , Water
6.
PeerJ ; 8: e10046, 2020.
Article in English | MEDLINE | ID: mdl-33024649

ABSTRACT

Chlorophyll fluorescence (ChlF) has been used to understand photosynthesis and its response to climate change, particularly with satellite-based data. However, it remains unclear how the ChlF ratio and photosynthesis are linked at the leaf level under drought stress. Here, we examined the link between ChlF ratio and photosynthesis at the leaf level by measuring photosynthetic traits, such as net CO2 assimilation rate (An), the maximum carboxylation rate of Rubisco (Vcmax), the maximum rate of electron transport (Jmax), stomatal conductance (gs) and total chlorophyll content (Chlt). The ChlF ratio of the leaf level such as maximum quantum efficiency of PSII (Fv/Fm) is based on fluorescence kinetics. ChlF intensity ratio (LD685/LD740) based on spectrum analysis was obtained. We found that a combination of the stomatal limitation, non-stomatal limitation, and Chlt regulated leaf photosynthesis under drought stress, while Jmax and Chlt governed the ChlF ratio. A significant link between the ChlF ratio and An was found under drought stress while no significant correlation in the control, which indicated that drought stress strengthens the link between the ChlF ratio and photosynthetic traits. These results suggest that the ChlF ratio can be a powerful tool to track photosynthetic traits of terrestrial ecosystems under drought stress.

7.
Ecol Evol ; 9(7): 4264-4274, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31016003

ABSTRACT

Winter snowfall is an important water source for plants during summer in semiarid regions. Snow, rain, soil water, and plant water were sampled for hydrogen and oxygen stable isotopes analyses under control and increased snowfall conditions in the temperate steppe of Inner Mongolia, China. Our study showed that the snowfall contribution to plant water uptake continued throughout the growing season and was detectable even in the late growing season. Snowfall versus rainfall accounted for 30% and 70%, respectively, of the water source for plants, on the basis of hydrogen stable isotope signature (δD) analysis, and accounted for 12% and 88%, respectively, on the basis of oxygen stable isotope signature (δ18O) analysis. Water use partitioning between topsoil and subsoil was found among species with different rooting depths. Increased snowfall weakened complementarity of plant water use during summer. Our study provides insights into the relationships between precipitation regimes and species interactions in semiarid regions.

8.
Ecol Evol ; 9(24): 14244-14252, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938515

ABSTRACT

Plant community may provide products and services to humans. However, patterns and drivers of community stability along a precipitation gradient remain unclear. A regional-scale transect survey was conducted over a 3-year period from 2013 to 2015, along a precipitation gradient from 275 to 555 mm and spanning 440 km in length from west to east in a temperate semiarid grassland of northern China, a central part of the Eurasian steppe. Our study provided regional-scale evidence that the community stability increased with increasing precipitation in the semiarid ecosystem. The patterns of community stability along a precipitation gradient were ascribed to community composition and community dynamics, such as species richness and species asynchrony, rather than the abiotic effect of precipitation. Species richness regulated the temporal mean (µ) of aboveground net primary productivity (ANPP), while species asynchrony regulated the temporal standard deviation (σ) of ANPP, which in turn contributed to community stability. Our findings highlight the crucial role of community composition and community dynamics in regulating community stability under climate change.

9.
Front Plant Sci ; 10: 1596, 2019.
Article in English | MEDLINE | ID: mdl-31921245

ABSTRACT

Nitrogen depositions in the Yangtze River Delta have is thought to shift the coexistence of mixed evergreen and deciduous species. In this study, the seedlings of the dominant evergreen species Cyclobalanopsis glauca Thunb. and the deciduous species Liquidambar formosana Hance from the Yangtze River Delta were chosen to test their responses to simulated N additions using an ecophysiological approach. N was added to the tree canopy at rates of 0 (CK), 25 kg N ha-1 year-1 (N25), and 50 kg N ha-1 year-1 (N50). The leaf N content per mass (N m, by 44.03 and 49.46%) and total leaf chlorophyll content (Chl, by 72.15 and 63.63%) were enhanced for both species, and C. glauca but not L. formosana tended to allocate more N to Chl per leaf area (with a higher slope). The enhanced N availability and Chl promoted the apparent quantum yield (AQY) significantly by 15.38 and 43.90% for L. formosana and C. glauca, respectively. Hydraulically, the increase in sapwood density (ρ) for L. formosana was almost double that of C. glauca. Synchronous improved sapwood specific hydraulic conductivity (K S, by 37.5%) for C. glauca induced a significant reduction in stomatal conductance (g s) (p < 0.05) in the N50 treatments, which is in contrast to the weak varied g s accompanied by a 59.49% increase in K S for L. formosana. As a result, the elevated maximum photosynthesis (A max) of 12.19% for L. formosana in combination with the increase in the total leaf area (indicated by a 37.82% increase in the leaf area ratio-leaf area divided by total aboveground biomass) ultimately yielded a 34.34% enhancement of total biomass. In contrast, the A max and total biomass were weakly promoted for C. glauca. The reason for these distinct responses may be attributed to the lower water potential at 50% of conductivity lost (P 50) for C. glauca, which enables higher hydraulic safety at the cost of a weak increase in Amax due to the stomatal limitation in response to elevated N availability. Altogether, our results indicate that the deciduous L. formosana would be more susceptible to elevated N availability even if both species received similar N allocation.

10.
Sci Total Environ ; 580: 900-906, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27986315

ABSTRACT

Canopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation. A dual isotope approach [simultaneous measurements of stable carbon (δ13C) and oxygen (δ18O) isotopes] was employed to distinguish between biochemical and stomatal limitations to photosynthesis. Our results showed that increases in net photosynthesis rates upon thinning only occurred in the current-year and one-year-old needles, and not in the two- to four-year-old needles. The increased δ13C and declined δ18O in current year needles of trees from thinned stands indicated that both the photosynthetic capacity and stomatal conductance resulted in increasing photosynthesis. In one-year-old needles of trees from thinned stands, an increased needle δ13C and a constant needle δ18O were observed, indicating the photosynthetic capacity rather than stomatal conductance contributed to the increasing photosynthesis. The higher water-soluble nitrogen content in current-year and one-year-old needles in thinned trees also supported that the photosynthetic capacity plays an important role in the enhancement of photosynthesis. In contrast, the δ13C, δ18O and water-soluble nitrogen in the two- to four-year-old needles were not significantly different between the control and thinned trees. Thus, the thinning effect on photosynthesis depends on needle age in a Chinese fir plantation. Our results highlight that the different responses of different-aged needles to thinning have to be taken into account for understanding and modelling ecosystem responses to management, especially under the expected environmental changes in future.


Subject(s)
Cunninghamia/physiology , Photosynthesis , Plant Leaves/physiology , Carbon Isotopes/analysis , Forestry , Nitrogen/analysis , Oxygen Isotopes/analysis , Trees
11.
Sci Rep ; 5: 18254, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666469

ABSTRACT

The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.


Subject(s)
Droughts , Ecosystem , Forests , Photosynthesis , Tropical Climate , Carbon , Carbon Dioxide , China , Plant Leaves , Soil , Water
12.
Funct Plant Biol ; 40(11): 1159-1167, 2013 Nov.
Article in English | MEDLINE | ID: mdl-32481183

ABSTRACT

A better understanding of thermal acclimation of leaf dark respiration in response to nocturnal and diurnal warming could help accurately predict the changes in carbon exchange of terrestrial ecosystems under global warming, especially under the asymmetric warming. A field manipulative experiment was established with control, nocturnal warming (1800-0600hours), diurnal warming (0600-1800hours), and diel warming (24h) under naturally fluctuating conditions in a semiarid temperate steppe in northern China in April 2006. Temperature response curves of in situ leaf dark respiration for Stipa krylovii Roshev. were measured at night (Rn) and after 30min of darkness imposed in the daytime (Rd). Leaf nonstructural carbohydrates were determined before sunrise and at sunset. Results showed that Rn could acclimate to nocturnal warming and diurnal warming, but Rd could not. The decreases in Q10 (temperature sensitivity) of Rn under nocturnal-warming and diurnal warming regimes might be attributed to greater depletion of total nonstructural carbohydrates (TNC). The real-time and intertwined metabolic interactions between chloroplastic and mitochondrial metabolism in the daytime could affect the impacts of warming on metabolite pools and the distinct response of Rn and Rd to warming. Projection on climate change-carbon feedback under climate warming must account for thermal acclimation of leaf dark respiration separately by Rn and Rd.

13.
PLoS One ; 8(2): e56482, 2013.
Article in English | MEDLINE | ID: mdl-23457574

ABSTRACT

BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf) by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf), An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag) to Tleaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10) of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.


Subject(s)
Acclimatization , Environment, Controlled , Photosynthesis , Poaceae/cytology , Poaceae/physiology , Temperature , Cell Respiration , China , Diffusion , Ecosystem , Poaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL