Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Environ Manage ; 351: 119886, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142601

ABSTRACT

Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.


Subject(s)
Chlorella , Microalgae , Plant Growth Regulators/pharmacology , Biofilms , Nitrogen , Biomass
2.
Crit Rev Biotechnol ; 43(2): 212-226, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35658696

ABSTRACT

To meet the sustainable development of the swine feed industry, it is essential to find alternative feed resources and develop new feed processing technologies. Distillers dried grains with solubles (DDGS) is a by-product from the ethanol industry consisting of adequate nutrients for swine and is an excellent choice for the swine farming industry. Here, a strategy of co-fermentation of DDGS and lignocellulosic feedstocks for production of swine feed was discussed. The potential of the DDGS and lignocellulosic feedstocks as feedstock for fermented pig feed and the complementary relationship between them were described. In order to facilitate the swine feed research in co-fermentation of DDGS and lignocellulosic feedstocks, the relevant studies on strain selection, fermentation conditions, targeted metabolism, product nutrition, as well as the growth and health of swine were collected and critically reviewed. This review proposed an approach for the production of easily digestible and highly nutritious swine feed via co-fermentation of DDGS and lignocellulosic feedstocks, which could provide a guide for cleaner swine farming, relieve stress on the increasing demand of high-value swine feed, and finally support the ever-increasing demand of the pork market.


Subject(s)
Animal Feed , Diet , Animals , Swine , Fermentation , Animal Feed/analysis , Zea mays , Edible Grain
3.
Appl Microbiol Biotechnol ; 107(2-3): 971-983, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622426

ABSTRACT

Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Microalgae , Nanoparticles , Chlamydomonas/metabolism , Reactive Oxygen Species/metabolism , Triglycerides/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Starch/metabolism , Microalgae/metabolism
4.
World J Microbiol Biotechnol ; 35(12): 190, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754912

ABSTRACT

Microalgae present great potential to replace land crops for the efficient production of large volumes of biomass for food, feed, fuels, and chemicals, as well as to treat wastewater and capture carbon. However, the commercialization of these technologies for bulk commodities requires a great reduction in the current microalgal biomass production cost. The bioreactor is the core of bioprocess engineering and is the premise for the commercial application of certain types of biotechnology. The challenges of phototrophic cultivation are completely different from those of heterotrophic processes because the efficiency of phototrophic cultivation is limited by the energy density of the input sunlight and the inorganic carbon supply. Thus, the development of microalgae cultivation technologies with low manufacturing and operating costs is key to addressing this problem, and floating photobioreactors (PBRs) are a promising solution. PBRs are deployed on the water surface without any land requirements, and wave energy provides free mixing energy. Additionally, the surrounding water can be used to control the culture temperature and to supply nutrients for microalgae growth. In this mini-review, the development of floating PBRs and their recent progress are presented. The effect of the carbon supply approach on the mixing and scaling-up of floating PBRs are critically discussed. The limitations and challenges in commercial applications of floating PBRs are analysed, and the need for future research is proposed. Finally, it is noted that microalgae farming on the ocean is a promising solution for human society to address the challenge of land space exhaustion due to the global population boom.


Subject(s)
Microalgae/growth & development , Photobioreactors/trends , Biofuels , Biomass , Biotechnology/trends , Carbon/metabolism
5.
Appl Microbiol Biotechnol ; 102(20): 8979-8987, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30056515

ABSTRACT

A low-cost floating photobioreactor (PBR) without the use of aeration and/or an agitation device, in which carbon was supplied in the form of bicarbonate and only wave energy was utilized for mixing, was developed in our previous study. Scaling up is a common challenge in the practical application of PBRs and has not yet been demonstrated for this new design. To fill this gap, cultivation of Spirulina platensis was conducted in this study. The results demonstrated that S. platensis had the highest productivity at 0.3 mol L-1 sodium bicarbonate, but the highest carbon utilization (104 ± 2.6%) was obtained at 0.1 mol L-1. Culture of Spirulina aerated with pure oxygen resulted in only minor inhibition of growth, indicating that its productivity will not be significantly reduced even if dissolved oxygen is accumulated to a high level due to intermittent mixing resulting from the use of wave energy. In cultivation using a floating horizontal photobioreactor at the 1.0 m2 scale, the highest biomass concentration of 2.24 ± 0.05 g L-1 was obtained with a culture depth of 5.0 cm and the highest biomass productivity of 18.9 g m-2 day-1 was obtained with a depth of 10.0 cm. This PBR was scaled up to 10 m2 (1000 L) with few challenges; biomass concentration and productivity during ocean testing were little different than those at the 1.0 m2 (100 L) scale. However, the larger PBR had an apparent carbon utilization efficiency of 45.0 ± 2.8%, significantly higher than the 39.4 ± 0.9% obtained at the 1 m2 scale. These results verified the ease of scaling up floating horizontal photobioreactors and showed their great potential in commercial applications.


Subject(s)
Oxygen/metabolism , Spirulina/growth & development , Biomass , Microalgae/growth & development , Microalgae/metabolism , Oxygen/analysis , Photobioreactors , Spirulina/metabolism
6.
J Ind Microbiol Biotechnol ; 44(9): 1279-1292, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551747

ABSTRACT

Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.


Subject(s)
Cell Membrane/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Sugars/metabolism , Biomass , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ethanol/metabolism , Fermentation , Glutamine/genetics , Glutamine/metabolism , Leucine/genetics , Leucine/metabolism , Lignin/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism
7.
Sci Total Environ ; 912: 169659, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38159749

ABSTRACT

Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 µg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 µg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.


Subject(s)
Chlorella , Microalgae , Microplastics/toxicity , Plastics , Wastewater , Nitric Oxide , Chlorophyll A , Superoxide Dismutase , Biofilms , Nitrogen
8.
Sci Total Environ ; 939: 173643, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38821282

ABSTRACT

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chlorella , Seawater , Water Pollutants, Chemical , Chlorella/physiology , Chlorella/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/toxicity , Water Pollutants, Chemical/toxicity , Seawater/chemistry , Risk Assessment , Waste Disposal, Fluid/methods , Aquaculture , Microalgae/drug effects , Microalgae/physiology
9.
Metabolites ; 13(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36677040

ABSTRACT

Lipid transporters synergistically contribute to oil accumulation under normal conditions in microalgae; however, their effects on lipid metabolism under stress conditions are unknown. Here, we examined the effect of the co-expression of lipid transporters, fatty acid transporters, (FAX1 and FAX2) and ABC transporter (ABCA2) on lipid metabolism and physiological changes in the green microalga Chlamydomonas under nitrogen (N) starvation. The results showed that the TAG content in FAX1-FAX2-ABCA2 over-expressor (OE) was 2.4-fold greater than in the parental line. Notably, in FAX1-FAX2-ABCA2-OE, the major membrane lipids and the starch and cellular biomass content also significantly increased compared with the control lines. Moreover, the expression levels of genes directly involved in TAG, fatty acid, and starch biosynthesis were upregulated. FAX1-FAX2-ABCA2-OE showed altered photosynthesis activity and increased ROS levels during nitrogen (N) deprivation. Our results indicated that FAX1-FAX2-ABCA2 overexpression not only enhanced cellular lipids but also improved starch and biomass contents under N starvation through modulation of lipid and starch metabolism and changes in photosynthesis activity. The strategy developed here could also be applied to other microalgae to produce FA-derived energy-rich and value-added compounds.

10.
Sci Total Environ ; 901: 166013, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37541491

ABSTRACT

Microalgae are great candidates for CO2 sequestration and sustainable production of food, feed, fuels and biochemicals. Light intensity, temperature, carbon supply, and cell physiological state are key factors of photosynthesis, and efficient phototrophic production of microalgal biomass occurs only when all these factors are in their optimal range simultaneously. However, this synergistic state is often not achievable due to the ever-changing environmental factors such as sunlight and temperature, which results in serious waste of sunlight energy and other resources, ultimately leading to high production costs. Most control strategies developed thus far in the bioengineering field actually aim to improve heterotrophic processes, but phototrophic processes face a completely different problem. Hence, an alternative control strategy needs to be developed, and precise microalgal cultivation is a promising strategy in which the production resources are precisely supplied according to the dynamic changes in key factors such as sunlight and temperature. In this work, the development and recent progress of precise microalgal phototrophic cultivation are reviewed. The key environmental and cultivation factors and their dynamic effects on microalgal cultivation are analyzed, including microalgal growth, cultivation costs and energy inputs. Future research for the development of more precise microalgae farming is discussed. This study provides new insight into developing cost-effective and efficient microalgae farming for CO2 sequestration.


Subject(s)
Microalgae , Carbon Dioxide , Biofuels , Agriculture , Farms , Biomass
11.
Sci Total Environ ; 856(Pt 2): 159153, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36195148

ABSTRACT

Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.


Subject(s)
Greenhouse Gases , Microalgae , Water Purification , Nitrous Oxide/analysis , Microalgae/metabolism , Denitrification , Nitrites/metabolism , Greenhouse Gases/metabolism , Ammonia/metabolism , Nitrification , Nitrogen/metabolism , Bacteria/metabolism , Carbon/metabolism , Bioreactors/microbiology
12.
J Agric Food Chem ; 71(46): 17833-17841, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934701

ABSTRACT

Microalgae are promising platforms for biofuel production. Transcription factors (TFs) are emerging as key regulators of lipid metabolism for biofuel production in microalgae. We previously identified a novel TF MYB1, which mediates lipid accumulation in the green microalga Chlamydomonas under nitrogen depletion. However, the function of MYB1 on lipid metabolism in microalgae under standard growth conditions remains poorly understood. Here, we examined the effects of MYB1 overexpression (MYB1-OE) on lipid metabolism and physiological changes in Chlamydomonas. Under standard growth conditions, MYB1-OE transformants accumulated 1.9 to 3.2-fold more triacylglycerols (TAGs) than that in the parental line (PL), and total fatty acids (FAs) also significantly increased. Moreover, saturated FA (C16:0) was enriched in TAGs and total FAs in MYB1-OE transformants. Notably, starch and protein content and biomass production also significantly increased in MYB1-OE transformants compared with that in PL. Furthermore, RT-qPCR results showed that the expressions of key genes involved in TAG, FA, and starch biosynthesis were upregulated. In addition, MYB1-OE transformants showed higher biomass production without a compromised cell growth rate and photosynthetic activity. Overall, our results indicate that MYB1 overexpression not only enhanced lipid content but also improved starch and protein content and biomass production under standard growth conditions. TF MYB1 engineering is a promising genetic engineering tool for biofuel production in microalgae.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Triglycerides/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Microalgae/genetics , Microalgae/metabolism , Starch/metabolism , Biomass , Biofuels , Fatty Acids/metabolism
13.
World J Microbiol Biotechnol ; 28(8): 2635-41, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22806189

ABSTRACT

Trichoderma reesei is an important cellulase producer and its secondary mycelial phase is responsible for cellulase expression and secretion in submerged fermentation. Little is known regarding the effects of fungal morphology on cellulase production by Trichoderma sp. In this study we aimed to extend the understanding of cellulase production by T. reesei, especially correlating cellulase productivity with pellet morphology and with its secretome characteristics. We found that T. reesei was more likely to form pellets in malt extract broth than in potato dextrose broth. CaCO(3) helped in formation of fine pellets in malt extract broth. 10(9) spores/ml resulted in formation of pellets with the size of 0.13 ± 0.047 mm. LC/MS spectrometry analysis indicated that the secretomes from pellet was different from that of mycelial mat under the same fermentation conditions. Optimization tests showed that lactose, xylose and Pluronic F68 are important for efficient production of cellulases with FPU activity in the pellets fermentation. This is the first report on the artificial formation of pellets by Trichoderma sp. as well as correlation between physiological characteristic of the pellets and cellulase production by T. reesei. The findings from this study can be used for improvement of cellulase productivity.


Subject(s)
Cellulase/biosynthesis , Fungal Proteins/biosynthesis , Trichoderma/enzymology , Fermentation , Protein Array Analysis , Spores, Fungal/enzymology , Trichoderma/growth & development
14.
Trends Biotechnol ; 40(2): 180-193, 2022 02.
Article in English | MEDLINE | ID: mdl-34325913

ABSTRACT

Commercial applications of microalgae for biochemicals and fuels are hampered by their high production costs, and the use of conventional carbon supplies is a key reason. Bicarbonate has been proposed as an alternative carbon source due to its potential advantages in lower carbon supply costs, convenience for photobioreactor development, biomass harvesting, and labor and energy savings. We review recent progress in bicarbonate-based microalgae cultivation, which validated previous assumptions, suggested further advantages, and demonstrated potential to significantly reduce production cost. Future research should focus on improving production efficiency and reducing energy inputs, including optimizing photobioreactor design, comprehensive utilization of natural power, and automation in production systems.


Subject(s)
Microalgae , Bicarbonates , Biomass , Carbon , Photobioreactors
15.
Bioresour Bioprocess ; 9(1): 4, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-38647742

ABSTRACT

Dunaliella salina is a green microalga with the great potential to generate natural ß-carotene. However, the corresponding mathematical models to guide optimized production of ß-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and ß-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both ß-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value ß-carotene production.

16.
Bioresour Technol ; 364: 128117, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244605

ABSTRACT

Using low strength wastewater for microalgae cultivation is challenged by slow growth and biomass harvesting issue in suspended systems, and growth-promoting effects of phytohormones at currently recommended dosages could neither obtain high enough biomass concentrations nor economic feasibility. This study aims to solve the issues of slow growth, biomass harvest, and phytohormone costs altogether by supplementing low dosage phytohormones in an improved capillary-driven attached cultivation device. The device displayed nutrients-condensing properties, and dosages of indole acetic acid (IAA), 6-benzylaminopurine (6-BA), and salicylic acid (SA) for highest microalgal growth were respectively 10-6 M, 10-6 M, and 10-7 M, being at least one order of magnitude lower than in suspended cultures. SA was most effective in growth-promoting (up to 7.0 g/m2 biomass density) and nutrients uptake (up to 98.6 % from the bulk environment), while IAA was most effective in antioxidative defenses. These results provided new insights in cost-effective and harvesting-convenient microalgae production.

17.
Sci Total Environ ; 852: 158515, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36063957

ABSTRACT

Microalgae biotechnology is a great candidate for carbon neutralization, wastewater treatment and the sustainable production of biofuels and food. Efficient and cost-effective microalgae production depends on highly coordinating the resources used for algal growth. However, dynamic natural disturbances such as culture temperature and sunlight can lead to the poor coordination and waste of resources. Open ponds are the most commonly used commercial microalgal production systems, and enhanced mixing can significantly increase their productivity, but mixing energy can be seriously wasted due to dynamic disturbances, presenting a hindrance to further reducing production costs. Herein, a smart and precise mixing strategy was developed for open ponds in which a paddle wheel's stirring speed for an open pond was smartly and precisely controlled in real time based on dynamic variations in light intensity and culture temperature. The proposed technology achieved the same biomass productivity of Spirulina platensis (8.37 g m-2 day-1) as a control with a constant high mixing rate under dynamic disturbances while reducing mixing energy inputs by approximately 30 % compared to the control. This study provides a promising method to address serious resource waste and poor coordination due to dynamic natural disturbances, holding great potential for efficient and cost-effective microalgae production.


Subject(s)
Microalgae , Ponds , Biofuels , Cost-Benefit Analysis , Biomass , Carbon , Wastewater
18.
Biotechnol Biofuels Bioprod ; 15(1): 54, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596223

ABSTRACT

BACKGROUND: Chloroplast and endoplasmic reticulum (ER)-localized fatty acid (FA) transporters have been reported to play important roles in oil (mainly triacylglycerols, TAG) biosynthesis. However, whether these FA transporters synergistically contribute to lipid accumulation, and their effect on lipid metabolism in microalgae are unknown. RESULTS: Here, we co-overexpressed two chloroplast-localized FA exporters (FAX1 and FAX2) and one ER-localized FA transporter (ABCA2) in Chlamydomonas. Under standard growth conditions, FAX1/FAX2/ABCA2 over-expression lines (OE) accumulated up to twofold more TAG than the parental strain UVM4, and the total amounts of major polyunsaturated FAs (PUFA) in TAG increased by 4.7-fold. In parallel, the total FA contents and major membrane lipids in FAX1/FAX2/ABCA2-OE also significantly increased compared with those in the control lines. Additionally, the total accumulation contribution ratio of PUFA, to total FA and TAG synthesis in FAX1/FAX2/ABCA2-OE, was 54% and 40% higher than that in UVM4, respectively. Consistently, the expression levels of genes directly involved in TAG synthesis, such as type-II diacylglycerol acyltransferases (DGTT1, DGTT3 and DGTT5), and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), significantly increased, and the expression of PGD1 (MGDG-specific lipase) was upregulated in FAX1/FAX2/ABCA2-OE compared to UVM4. CONCLUSION: These results indicate that the increased expression of FAX1/FAX2/ABCA2 has an additive effect on enhancing TAG, total FA and membrane lipid accumulation and accelerates the PUFA remobilization from membrane lipids to TAG by fine-tuning the key genes involved in lipid metabolism under standard growth conditions. Overall, FAX1/FAX2/ABCA2-OE shows better traits for lipid accumulation than the parental line and previously reported individual FA transporter-OE. Our study provides a potential useful strategy to increase the production of FA-derived energy-rich and value-added compounds in microalgae.

19.
Bioresour Technol ; 349: 126868, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183724

ABSTRACT

The objective of this study was to investigate the relationship between dissolved organic matter (DOM) and microbial communities during the co-fermentation of distillers dried grains with solubles (DDGS) and sugarcane pith at different oxygen levels. In aerobic fermentation (AF), the content of DOM decreased from 32.61 mg/g to 14.14 mg/g, and decreased from 32.61 mg/g to 30.83 mg/g in anaerobic fermentation (ANF). Phenols and alcohols were consumed first in AF, while lipids and proteins were consumed first in ANF. Degradation rates of cellulose, hemicellulose and lignin in AF (6.67%, 39.93%, 36.50%) were higher than those in ANF (0.69%, 18.36%, 9.12%). Firmicutes, Actinobacteriota and Ascomycota were the main phyla in community. Distance-based redundancy analysis showed that pH, organic matter (OM) and DOM were the main driving factors of microbial community succession.


Subject(s)
Microbiota , Saccharum , Animal Feed/analysis , Animals , Diet , Dissolved Organic Matter , Edible Grain/chemistry , Fermentation , Oxygen/metabolism , Rumen/metabolism , Zea mays
20.
Sci Total Environ ; 813: 151891, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34826467

ABSTRACT

Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.


Subject(s)
Microalgae , Water Pollutants, Chemical , Anti-Bacterial Agents/toxicity , Bacteria , Ecosystem , Wastewater , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL