Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004146

ABSTRACT

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Subject(s)
Hippocampus/cytology , Neocortex/cytology , Transcriptome/genetics , Animals , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Mice, Transgenic
2.
Neuron ; 109(9): 1449-1464.e13, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33789083

ABSTRACT

Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.


Subject(s)
Brain/cytology , Neurons/classification , Neurons/cytology , Single-Cell Analysis/methods , Animals , Datasets as Topic , Dependovirus , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL