ABSTRACT
Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/ß-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.
Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Drug Therapy, Combination , Lung Neoplasms/therapy , Tumor Escape/drug effects , Animals , Antigen Presentation/drug effects , Antineoplastic Agents/therapeutic use , Azacitidine/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , T-Lymphocytes/immunology , Transcriptome , Tumor MicroenvironmentABSTRACT
We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.
Subject(s)
DNA Methylation/drug effects , Interferon Type I/immunology , Melanoma/immunology , Melanoma/therapy , Animals , Azacitidine/pharmacology , Cell Line, Tumor , DNA Modification Methylases/antagonists & inhibitors , Endogenous Retroviruses/genetics , Female , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , RNA, Double-Stranded/metabolismABSTRACT
Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.
Subject(s)
HIV-1 , Immunologic Memory , Interleukin-15 , Killer Cells, Natural , STAT Transcription Factors , Triazines , Virus Latency , Humans , Cell Line, Tumor , Chemokine CXCL10 , Cytotoxicity Tests, Immunologic , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , HIV-1/immunology , Immunologic Memory/drug effects , Interferon-gamma , Interleukin-15/immunology , Interleukin-15/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , STAT Transcription Factors/metabolism , Transcriptional Activation/drug effects , Triazines/pharmacology , Virus Activation/drug effects , Virus Latency/drug effectsABSTRACT
BACKGROUND: Adoptive T cell therapy (ATCT) has been successful in treating hematological malignancies and is currently under investigation for solid-tumor therapy. In contrast to existing chimeric antigen receptor (CAR) T cell and/or antigen-specific T cell approaches, which require known targets, and responsive to the need for targeting a broad repertoire of antigens in solid tumors, we describe the first use of immunostimulatory photothermal nanoparticles to generate tumor-specific T cells. METHODS: Specifically, we subject whole tumor cells to Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) before culturing with dendritic cells (DCs), and subsequent stimulation of T cells. This strategy differs from previous approaches using tumor cell lysates because we use nanoparticles to mediate thermal and immunogenic cell death in tumor cells, rendering them enhanced antigen sources. RESULTS: In proof-of-concept studies using two glioblastoma (GBM) tumor cell lines, we first demonstrated that when PBNP-PTT was administered at a "thermal dose" targeted to induce the immunogenicity of U87 GBM cells, we effectively expanded U87-specific T cells. Further, we found that DCs cultured ex vivo with PBNP-PTT-treated U87 cells enabled 9- to 30-fold expansion of CD4+ and CD8+ T cells. Upon co-culture with target U87 cells, these T cells secreted interferon-É£ in a tumor-specific and dose-dependent manner (up to 647-fold over controls). Furthermore, T cells manufactured using PBNP-PTT ex vivo expansion elicited specific cytolytic activity against target U87 cells (donor-dependent 32-93% killing at an effector to target cell (E:T) ratio of 20:1) while sparing normal human astrocytes and peripheral blood mononuclear cells from the same donors. In contrast, T cells generated using U87 cell lysates expanded only 6- to 24-fold and killed 2- to 3-fold less U87 target cells at matched E:T ratios compared with T cell products expanded using the PBNP-PTT approach. These results were reproducible even when a different GBM cell line (SNB19) was used, wherein the PBNP-PTT-mediated approach resulted in a 7- to 39-fold expansion of T cells, which elicited 25-66% killing of the SNB19 cells at an E:T ratio of 20:1, depending on the donor. CONCLUSIONS: These findings provide proof-of-concept data supporting the use of PBNP-PTT to stimulate and expand tumor-specific T cells ex vivo for potential use as an adoptive T cell therapy approach for the treatment of patients with solid tumors.
Subject(s)
Glioblastoma , Nanoparticles , Humans , Leukocytes, Mononuclear , Immunotherapy, Adoptive/methods , CD8-Positive T-Lymphocytes , Glioblastoma/therapy , Cell Line, TumorABSTRACT
Cancer undergoes "immune editing" to evade destruction by cells of the host immune system including natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Current adoptive cellular immune therapies include CAR T cells and dendritic cell vaccines, strategies that have yet to show success for a wide range of tumors. Cancer resistance to immune therapy is driven by extrinsic factors and tumor cell intrinsic factors that contribute to immune evasion. These extrinsic factors include immunosuppressive cell populations such as regulatory T cells (Tregs), tumor-associated macrophages (TAMS), and myeloid-derived suppressor cells (MDSCs). These cells produce and secrete immunosuppressive factors and express inhibitory ligands that interact with receptors on T cells including PD-1 and CTLA-4. Immune checkpoint blockade (ICB) therapies such as anti-PD-1 and anti-CTLA-4 have shown success by increasing immune activation to eradicate cancer, though both primary and acquired resistance remain a problem. Tumor cell intrinsic factors driving primary and acquired resistance to these immune therapies include genetic and epigenetic mechanisms. Epigenetic therapies for cancer including DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), and histone methyltransferase inhibitors (HMTi) can stimulate anti-tumor immunity in both tumor cells and host immune cells. Here we discuss in detail tumor mechanisms of immune evasion and how common epigenetic therapies for cancer may be used to reverse immune evasion. Lastly, we summarize current clinical trials combining epigenetic therapies with immune therapies to reverse cancer immune resistance mechanisms.
Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Drug Resistance, Neoplasm/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , CTLA-4 Antigen/immunology , Epigenesis, Genetic , Humans , Immunotherapy/adverse effects , Killer Cells, Natural/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/immunology , Tumor Microenvironment/drug effectsABSTRACT
Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.
Subject(s)
Epigenesis, Genetic/drug effects , Immunomodulation/drug effects , Interferon Type I/metabolism , Ovarian Neoplasms/etiology , Ovarian Neoplasms/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents, Immunological , Azacitidine/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Tumor Burden/drug effects , Tumor Burden/immunology , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: Aberrant DNA methylation is a hallmark of many cancers. Classically there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I, and uterine papillary serous carcinoma (UPSC), or Type II. However, the whole genome DNA methylation changes in these two classical types of endometrial cancer is still unknown. RESULTS: Here we described complete genome-wide DNA methylome maps of EAC, UPSC, and normal endometrium by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme digestion sequencing (MRE-seq). We discovered distinct genome-wide DNA methylation patterns in EAC and UPSC: 27,009 and 15,676 recurrent differentially methylated regions (DMRs) were identified respectively, compared with normal endometrium. Over 80% of DMRs were in intergenic and intronic regions. The majority of these DMRs were not interrogated on the commonly used Infinium 450K array platform. Large-scale demethylation of chromosome X was detected in UPSC, accompanied by decreased XIST expression. Importantly, we discovered that the majority of the DMRs harbored promoter or enhancer functions and are specifically associated with genes related to uterine development and disease. Among these, abnormal methylation of transposable elements (TEs) may provide a novel mechanism to deregulate normal endometrium-specific enhancers derived from specific TEs. CONCLUSIONS: DNA methylation changes are an important signature of endometrial cancer and regulate gene expression by affecting not only proximal promoters but also distal enhancers.
Subject(s)
Endometrial Neoplasms/genetics , Endometrial Neoplasms/physiopathology , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/physiopathology , Adaptor Proteins, Signal Transducing/genetics , Aldehyde Dehydrogenase 1 Family , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Chromosomes, Human, X , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Transposable Elements/genetics , Female , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , MutL Protein Homolog 1 , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Retinal Dehydrogenase/genetics , Sequence Analysis, DNAABSTRACT
SUMMARY: Murayama and colleagues establish DHX9 as an exciting new target to induce viral mimicry and downstream antitumor immunity. The potential for use in combination with existing immune therapies is especially exciting in SCLC, an immunologically cold and deadly disease. See related article by Murayama et al., p. 468 (10) .
Subject(s)
DEAD-box RNA Helicases , Lung Neoplasms , Humans , DEAD-box RNA Helicases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplasm Proteins/geneticsABSTRACT
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/drug effects , Neoplasms/genetics , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Immunotherapy/methodsABSTRACT
Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.
ABSTRACT
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
ABSTRACT
BACKGROUND: Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies. METHODS: In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT. RESULTS: Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME. CONCLUSIONS: In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.
Subject(s)
Macrophages , Melanoma , Animals , Mice , Humans , Macrophages/immunology , Macrophages/metabolism , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Cell- and Tissue-Based Therapy/methods , Cell Line, Tumor , Tumor Microenvironment , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cellular Reprogramming , Disease Models, AnimalABSTRACT
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
ABSTRACT
Alternative strategies beyond current chemotherapy and radiation therapy regimens are needed in the treatment of advanced stage and recurrent endometrial cancers. There is considerable promise for biologic agents targeting the extracellular signal-regulated kinase (ERK) pathway for treatment of these cancers. Many downstream substrates of the ERK signaling pathway, such as glycogen synthase kinase 3ß (GSK3ß), and their roles in endometrial carcinogenesis have not yet been investigated. In this study, we tested the importance of GSK3ß inhibition in endometrial cancer cell lines and in vivo models. Inhibition of GSK3ß by either lithium chloride (LiCl) or specific GSK3ß inhibitor VIII showed cytostatic and cytotoxic effects on multiple endometrial cancer cell lines, with little effect on the immortalized normal endometrial cell line. Flow cytometry and immunofluorescence revealed a G2/M cell cycle arrest in both type I (AN3CA, KLE, and RL952) and type II (ARK1) endometrial cancer cell lines. In addition, LiCl pre-treatment sensitized AN3CA cells to the chemotherapy agent paclitaxel. Administration of LiCl to AN3CA tumor-bearing mice resulted in partial or complete regression of some tumors. Thus, GSK3ß activity is associated with endometrial cancer tumorigenesis and its pharmacologic inhibition reduces cell proliferation and tumor growth.
Subject(s)
Endometrial Neoplasms/drug therapy , Glycogen Synthase Kinase 3/antagonists & inhibitors , Lithium Chloride/pharmacology , Paclitaxel/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Endometrial Neoplasms/metabolism , Female , Glycogen Synthase Kinase 3 beta , Humans , M Phase Cell Cycle Checkpoints/drug effects , Mice , Neoplasm Transplantation , Signal Transduction/drug effects , Thiazoles/pharmacology , Urea/analogs & derivatives , Urea/pharmacology , Xenograft Model Antitumor AssaysABSTRACT
Cancer cell senescence in lung squamous cell carcinoma (LUSC) is associated with a poor response to chemotherapies and immunotherapies due to promotion of an immunosuppressive tumor microenvironment. This environment is shaped by the senescence-associated secretory pathway, which recruits suppressive immune cell populations. In a recent study, Attig and colleagues identified a transcription factor-activated molecular switch that circumvents cellular senescence through increased expression of the calbindin protein. A human endogenous retrovirus (HERV) sequence upstream of the calbindin gene, CALB1, promotes the transcription of an HERVH-CALB1 transcript through a splice event at the third CALB1 exon in a process known as protein exaptation. The KLF5 transcription factor mediates this transcriptional activity by binding at the HERVH sequence, subsequently initiating the chimeric HERVH-CALB1 transcription. This increased expression of calbindin reduces CXCL8 chemokine production and downstream neutrophil recruitment in LUSC tumor cells. CALB1 exaptation by HERVH is one example by which endogenous retroelements (ERE) regulate immunity in human cancers, highlighting the emerging role of EREs in tumor immunity.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Endogenous Retroviruses , Lung Neoplasms , Humans , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Transcription Factors/metabolism , Lung Neoplasms/genetics , Cellular Senescence/genetics , Calbindins/genetics , Calbindins/metabolism , Tumor MicroenvironmentABSTRACT
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Subject(s)
DNA Methylation , Neoplasms , Humans , Epigenesis, Genetic , Neoplasms/drug therapy , Neoplasms/genetics , Immunotherapy , EpigenomeABSTRACT
Targeting DNA methyltransferase 1 (DNMT1) has immunomodulatory and anti-neoplastic activity, especially when paired with cancer immunotherapies. Here we explore the immunoregulatory functions of DNMT1 in the tumor vasculature of female mice. Dnmt1 deletion in endothelial cells (ECs) impairs tumor growth while priming expression of cytokine-driven cell adhesion molecules and chemokines important for CD8+ T-cell trafficking across the vasculature; consequently, the efficacy of immune checkpoint blockade (ICB) is enhanced. We find that the proangiogenic factor FGF2 promotes ERK-mediated DNMT1 phosphorylation and nuclear translocation to repress transcription of the chemokines Cxcl9/Cxcl10 in ECs. Targeting Dnmt1 in ECs reduces proliferation but augments Th1 chemokine production and extravasation of CD8+ T-cells, suggesting DNMT1 programs immunologically anergic tumor vasculature. Our study is in good accord with preclinical observations that pharmacologically disrupting DNMT1 enhances the activity of ICB but suggests an epigenetic pathway presumed to be targeted in cancer cells is also operative in the tumor vasculature.