Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cancer Immunol Immunother ; 73(3): 60, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400933

ABSTRACT

Over the past decade, US Food and Drug Administration (FDA)-approved immune checkpoint inhibitors that target programmed death-1 (PD-1) have demonstrated significant clinical benefit particularly in patients with PD-L1 expressing tumors. Toripalimab is a humanized anti-PD-1 antibody, approved by FDA for first-line treatment of nasopharyngeal carcinoma in combination with chemotherapy. In a post hoc analysis of phase 3 studies, toripalimab in combination with chemotherapy improved overall survival irrespective of PD-L1 status in nasopharyngeal carcinoma (JUPITER-02), advanced non-small cell lung cancer (CHOICE-01) and advanced esophageal squamous cell carcinoma (JUPITER-06). On further characterization, we determined that toripalimab is molecularly and functionally differentiated from pembrolizumab, an anti-PD-1 mAb approved previously for treating a wide spectrum of tumors. Toripalimab, which binds the FG loop of PD-1, has 12-fold higher binding affinity to PD-1 than pembrolizumab and promotes significantly more Th1- and myeloid-derived inflammatory cytokine responses in healthy human PBMCs in vitro. In an ex vivo system employing dissociated tumor cells from treatment naïve non-small cell lung cancer patients, toripalimab induced several unique genes in IFN-γ and immune cell pathways, showed different kinetics of activation and significantly enhanced IFN-γ signature. Additionally, binding of toripalimab to PD-1 induced lower levels of SHP1 and SHP2 recruitment, the negative regulators of T cell activation, in Jurkat T cells ectopically expressing PD-1. Taken together, these data demonstrate that toripalimab is a potent anti-PD-1 antibody with high affinity PD-1 binding, strong functional attributes and demonstrated clinical activity that encourage its continued clinical investigation in several types of cancer.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lung Neoplasms , Nasopharyngeal Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Lung Neoplasms/drug therapy , Nasopharyngeal Carcinoma , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , T-Lymphocytes/pathology
2.
PLoS Pathog ; 11(9): e1005103, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352406

ABSTRACT

Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8-12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B, Chronic/veterinary , Immunity, Cellular/drug effects , Immunologic Factors/therapeutic use , Interferon-alpha/therapeutic use , Liver/metabolism , Transcription, Genetic , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Biopsy , Dose-Response Relationship, Drug , Gene Expression Profiling , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Immunologic Factors/administration & dosage , Immunologic Factors/genetics , Immunologic Factors/metabolism , Interferon-alpha/administration & dosage , Interferon-alpha/genetics , Interferon-alpha/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Liver/immunology , Liver/pathology , Liver/virology , Male , Marmota , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Viral Load/drug effects
3.
J Virol ; 88(9): 4647-56, 2014 May.
Article in English | MEDLINE | ID: mdl-24478422

ABSTRACT

UNLABELLED: We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63-66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE: This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.


Subject(s)
Antiviral Agents/metabolism , Hepacivirus/drug effects , RNA, Small Interfering/metabolism , Selection, Genetic , Animals , Disease Models, Animal , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepatitis C/drug therapy , Hepatitis C/virology , Male , Mice , Mutation , RNA, Small Interfering/genetics , Sequence Analysis
4.
J Hepatol ; 61(4): 730-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24824278

ABSTRACT

BACKGROUND & AIMS: Achievement of HBsAg loss remains the hallmark of chronic hepatitis B treatment. In order to identify host factors contributing to treatment-induced HBsAg loss, we performed a genome-wide screen of single nucleotide polymorphisms (SNPs) and studied its immunological consequence. METHODS: Chronic hepatitis B patients (40 HBeAg-positive and 44 HBeAg-negative) treated with peginterferon alfa-2a and adefovir were genotyped for 999,091 SNPs, which were associated with HBsAg loss at week 96 (n = 9). Plasma carnitine levels were measured by tandem-mass spectrometry, and the effect of carnitine on the proliferative capacity of hepatitis B virus (HBV)-specific and non-specific CD8 T cells was studied in vitro. RESULTS: One polymorphism, rs12356193 located in the SLC16A9 gene, was genome-wide significantly associated with HBsAg loss at week 96 (p = 1.84 × 10(-8)). The previously reported association of rs12356193 with lower carnitine levels was confirmed in our cohort, and baseline carnitine levels were lower in patients with HBsAg loss compared to patients with HBsAg persistence (p = 0.02). Furthermore, we demonstrated that carnitine suppressed HBV-specific CD8 T cell proliferation. CONCLUSIONS: In chronic hepatitis B patients treated with peginterferon and adefovir, we identified strong associations of SLC16A9 gene variation and carnitine levels with HBsAg loss. Our results further suggest that a lower baseline plasma carnitine level increases the proliferative capacity of CD8 T cells, making patients more susceptible to the immunological effect of this treatment. These novel findings may provide new insight into factors involved in treatment-induced HBsAg loss, and play a role in the prediction of treatment outcome.


Subject(s)
Adenine/analogs & derivatives , Carnitine/blood , Hepatitis B Surface Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B, Chronic , Interferon-alpha/administration & dosage , Monocarboxylic Acid Transporters/genetics , Organophosphonates/administration & dosage , Polyethylene Glycols/administration & dosage , Adenine/administration & dosage , Adult , Antiviral Agents/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Drug Therapy, Combination , Female , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Recombinant Proteins/administration & dosage , Treatment Outcome , Vitamin B Complex/blood
5.
Hepatology ; 57(1): 13-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22806943

ABSTRACT

UNLABELLED: The woodchuck model of hepatitis B virus (HBV) infection displays many characteristics of human infection and has particular value for characterizing the host immune responses during the development of chronic infection. Using the newly developed custom woodchuck microarray platform, we compared the intrahepatic transcriptional profiles of neonatal woodchucks with self-limiting woodchuck hepatitis virus (WHV) infection to those woodchucks progressing to persistent WHV infection. This revealed that WHV does not induce significant intrahepatic gene expression changes during the early-acute stage of infection (8 weeks), suggesting it is a stealth virus. At the mid-acute phase of infection (14 weeks), resolution was associated with induction of a prominent cytotoxic T-cell signature. Strikingly, this was accompanied by high-level expression of PD-1 and various other inhibitory T-cell receptors, which likely act to minimize liver damage by cytotoxic T cells during viral clearance. In contrast to the expression of perforin and other cytotoxic effector genes, the interferon-γ (IFN-γ) signaling response in the mid-acute phase was comparable to that in chronically infected adult animals. The absence of a strong IFN-α/ß transcriptional response indicated that type I IFN is not a critical mediator of self-limiting infection. Nevertheless, a number of antiviral genes, including viperin, were differentially expressed during resolving infection, suggesting that a subset of IFN-stimulated genes (ISG) may play a role in the control of WHV replication. CONCLUSION: We identified new immune pathways associated with the clearance of hepadnavirus infection revealing novel molecular targets with potential for the therapeutic treatment of chronic hepatitis B.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B/metabolism , Liver/metabolism , Animals , Animals, Newborn , Chronic Disease , Disease Models, Animal , Hepatitis B/genetics , Hepatitis B/immunology , Interferon Regulatory Factor-1/metabolism , Marmota , T-Lymphocytes, Cytotoxic/physiology
7.
Hepatology ; 56(3): 820-30, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22431061

ABSTRACT

UNLABELLED: The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly, and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (1) a limited intrahepatic type I interferon response; (2) intrahepatic induction of markers associated with T cell exhaustion; (3) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver; and (4) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. CONCLUSION: Our data establish the translational value of the woodchuck model and provide new insight into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/genetics , Hepatitis B, Chronic/virology , Transcriptome , Animals , Disease Models, Animal , Male , Marmota
8.
mSphere ; 3(6)2018 11 14.
Article in English | MEDLINE | ID: mdl-30429226

ABSTRACT

Viruses utilize a number of host factors in order to carry out their replication cycles. Influenza A virus (IAV) and human respiratory syncytial virus (RSV) both infect the tissues of the respiratory tract, and as such we hypothesize that they might require similar host factors. Several published genome-wide screens have identified putative IAV host factors; however, there is significant discordance between their hits. In order to build on this work, we integrated a variety of "OMICS" data sources using two complementary network analyses, yielding 51 genes enriched for both IAV and RSV replication. We designed a targeted small interfering RNA (siRNA)-based assay to screen these genes against IAV under robust conditions and identified 13 genes supported by two IAV subtypes in both primary and transformed human lung cells. One of these hits, RNA binding motif 14 (RBM14), was validated as a required host factor and furthermore was shown to relocalize to the nucleolus upon IAV infection but not with other viruses. Additionally, the IAV NS1 protein is both necessary and sufficient for RBM14 relocalization, and relocalization also requires the double-stranded RNA (dsRNA) binding capacity of NS1. This work reports the discovery of a new host requirement for IAV replication and exposes a novel example of interplay between IAV NS1 and the host protein, RBM14.IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) present major global disease burdens. There are high economic costs associated with morbidity as well as significant mortality rates, especially in developing countries, in children, and in the elderly. There are currently limited therapeutic options for these viruses, which underscores the need for novel research into virus biology that may lead to the discovery of new therapeutic approaches. This work extends existing research into host factors involved in virus replication and explores the interaction between IAV and one such host factor, RBM14. Further study to fully characterize this interaction may elucidate novel mechanisms used by the virus during its replication cycle and open new avenues for understanding virus biology.


Subject(s)
Cell Nucleolus/chemistry , Host-Pathogen Interactions , Influenza A virus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Cells, Cultured , Humans , Protein Transport
9.
Oncogene ; 22(43): 6661-8, 2003 Oct 02.
Article in English | MEDLINE | ID: mdl-14555979

ABSTRACT

Glioblastomas (GBM) are the most frequent and malignant human brain tumor type. Typically striking in adulthood, tumor progression is rapid, relentless, and ultimately leads to the patient's death within a year of diagnosis. The identification of transcriptionally regulated genes can lead to the discovery of targets for antibody or small-molecule-mediated therapy, as well as diagnostic markers. We prepared cDNA arrays that are specifically enriched for genes expressed in human brain tumors and profiled gene expression patterns in 14 individual tumor samples. Out of 25,000 clones arrayed, greater than 200 genes were found transcriptionally induced in glioblastomas compared to normal human brain tissue including the receptor tyrosine phosphatasezeta (RPTPzeta) and one of its ligands, pleiotrophin (Ptn). We confirmed by Northern blot analysis and immunohistochemistry that RPTPzeta is enriched in tumor samples. Knockdown of RPTPzeta by RNA interference studies established a functional role of RPTPzeta in cell migration. Our results suggest a novel function for RPTPzeta in regulating glioblastoma cell motility and point to the therapeutic utility of RPTPzeta as a target for antibody-mediated therapy of brain tumors.


Subject(s)
Brain Neoplasms/enzymology , Glioma/enzymology , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/physiology , Blotting, Northern , Blotting, Western , Brain/metabolism , Cell Movement , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Immunohistochemistry , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Protein Structure, Tertiary , RNA/metabolism , RNA Interference , RNA, Messenger/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Transcription, Genetic , Tumor Cells, Cultured
10.
Oncogene ; 23(49): 8158-70, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15361835

ABSTRACT

Survival factors play critical roles in regulating cell growth in normal and cancer cells. We designed a genetic screen to identify survival factors which protect tumor cells from apoptosis. A retroviral expression library of random cDNA fragments was constructed from cancer cells and used to transduce the colon carcinoma cell line HCT116. Recipient cells were functionally selected for induction of caspase 3-mediated apoptosis. Analyses of over 10,000 putative genetic suppression elements (GSEs) sequences revealed cognate gene candidates that are implicated in apoptosis. We further analysed 26 genes encoding cell surface and secreted proteins that can potentially serve as targets for therapeutic antibodies. Tetracycline-inducible GSEs from several gene candidates induced apoptosis in stable HCT 116 cell lines. Similar phenotypes were caused by RNAi derived from the same genes. Our data suggest requirement for the cell surface targets IGF2R, L1CAM and SLC31A1 in tumor cell growth in vitro, and suggests that IGF2R is required for xenograft tumor growth in a mouse model.


Subject(s)
Apoptosis , Colonic Neoplasms/pathology , Receptor, IGF Type 2/physiology , Animals , Caspase 3 , Caspases/physiology , Cell Division , Cell Line, Tumor , Cell Survival , Humans , Mice , Neoplasm Transplantation , RNA, Small Interfering/pharmacology , Receptor, IGF Type 2/genetics , Transduction, Genetic , Transplantation, Heterologous
11.
BMC Genomics ; 6: 55, 2005 Apr 18.
Article in English | MEDLINE | ID: mdl-15836779

ABSTRACT

BACKGROUND: Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. RESULTS: Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. CONCLUSION: Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries.


Subject(s)
Biomarkers, Tumor/genetics , Cell Membrane/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Membrane Proteins/chemistry , Neovascularization, Pathologic , Analysis of Variance , Animals , Cell Line, Transformed , Cell Line, Tumor , DNA, Complementary/metabolism , Female , Genetic Markers , Genetic Techniques , Genomics/methods , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Multivariate Analysis , Neoplasm Transplantation , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Principal Component Analysis , RNA/metabolism , Signal Transduction
12.
J Neurochem ; 96(1): 14-29, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16300643

ABSTRACT

In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene induction phase occurred at 0-3 h of reperfusion, and the second at 9-15 h, and was validated by in situ hybridization. Four gene clusters displayed a progressive increase in expression over time and included 50 genes linked to cell motility, lipid synthesis and trafficking (i.e. ApoD, NPC1, G3P-dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity.


Subject(s)
Brain Chemistry/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain/pathology , Gene Expression Profiling , Gene Expression Regulation/physiology , Stroke/metabolism , Animals , Autoradiography , Brain Ischemia/pathology , Cell Proliferation , Cell Survival/physiology , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , In Situ Hybridization , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Male , Multigene Family/genetics , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Oligonucleotide Array Sequence Analysis , RNA/biosynthesis , RNA/isolation & purification , Rats , Rats, Wistar , Synapses/physiology , Transcriptional Activation
13.
Eur J Neurosci ; 24(10): 2705-20, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17156197

ABSTRACT

Basic helix-loop-helix PAS domain proteins form a growing family of transcription factors. These proteins are involved in the process of adaptation to cellular stresses and environmental factors such as a change in oxygen concentration. We describe the identification and characterization of a recently cloned PAS domain protein termed Npas4 in ischemic rat brain. Using gene expression profiling following middle cerebral artery occlusion, we showed that the Npas4 mRNA is differentially expressed in ischemic tissue. The full-length gene was cloned from rat brain and its spatial and temporal expression characterized with in situ hybridization and Northern blotting. The Npas4 mRNA is specifically expressed in the brain and is highly up-regulated in ischemic tissues following both focal and global cerebral ischemic insults. Immunohistochemistry revealed a strong expression in the limbic system and thalamus, as well as in layers 3 and 5 in the cortex of the unchallenged brain. When overexpressed in HEK 293 cells, Npas4 appears as a protein of approximately 100 kDa. In brain samples, however, in addition to the 100 kDa band a specific 200 kDa immunoreactive band was also detected. Ischemic challenge lead to a decrease in the 200 kDa form and a simultaneous increase in the 100 kDa immunoreactivity. This could indicate a novel regulatory mechanism for activation and/or deactivation of this protein in response to ischemic brain injury.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation/physiology , Helix-Loop-Helix Motifs , Infarction, Middle Cerebral Artery/metabolism , Nerve Tissue Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Blotting, Northern/methods , Blotting, Western/methods , Brain/cytology , Cells, Cultured , Embryo, Mammalian , Immunohistochemistry/methods , In Situ Hybridization , Infarction, Middle Cerebral Artery/pathology , Male , Nerve Tissue Proteins/genetics , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction/methods , Subcellular Fractions/metabolism , Synaptophysin/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL