Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
J Allergy Clin Immunol ; 150(6): 1556-1562, 2022 12.
Article in English | MEDLINE | ID: mdl-35987349

ABSTRACT

BACKGROUND: Newborn screening can identify neonatal T-cell lymphopenia through detection of a low number of copies of T-cell receptor excision circles in dried blood spots collected at birth. After a positive screening result, further diagnostic testing is required to determine whether the subject has severe combined immunodeficiency or other causes of T-cell lymphopenia. Even after thorough evaluation, approximately 15% of children with a positive result of newborn screening for T-cell receptor excision circles remain genetically undiagnosed. Identifying the underlying genetic etiology is necessary to guide subsequent clinical management and family planning. OBJECTIVE: We sought to elucidate the genetic basis of patients with T-cell lymphopenia without an apparent genetic diagnosis. METHODS: We used clinical genomic testing as well as functional and immunologic assays to identify and elucidate the genetic and mechanistic basis of T-cell lymphopenia. RESULTS: We report 2 unrelated individuals with nonsevere T-cell lymphopenia and abnormal T-cell receptor excision circles who harbor heterozygous loss-of-function variants in forkhead box I3 transcription factor (FOXI3). CONCLUSION: Our findings support the notion that haploinsufficiency of FOXI3 results in T-cell lymphopenia with variable expressivity and that FOXI3 may be a key modulator of thymus development.


Subject(s)
Genomics , Receptors, Antigen, T-Cell , Infant, Newborn , Child , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
2.
J Clin Immunol ; 42(6): 1244-1253, 2022 08.
Article in English | MEDLINE | ID: mdl-35585372

ABSTRACT

BACKGROUND: Autosomal recessive (AR) PKCƎĀ“ deficiency is a rare inborn error of immunity (IEI) characterized by autoimmunity and susceptibility to bacterial, fungal, and viral infections. PKCƎĀ“ is involved in the intracellular production of reactive oxidative species (ROS). MATERIAL AND METHODS: We studied a 5-year old girl presenting with a history of Burkholderia cepacia infection. She had no history of autoimmunity, lymphocyte counts were normal, and no auto-antibodies were detected in her plasma. We performed a targeted panel analysis of 407 immunity-related genes and immunological investigations of the underlying genetic condition in this patient. RESULTS: Consistent with a history suggestive of chronic granulomatous disease (CGD), oxidative burst impairment was observed in the patient's circulating phagocytes in a dihydrorhodamine 123 (DHR) assay. However, targeted genetic panel analysis identified no candidate variants of known CGD-causing genes. Two heterozygous candidate variants were detected in PRKCD: c.285C > A (p.C95*) and c.376G > T (p.D126Y). The missense variant was also predicted to cause abnormal splicing, as it is located at the splice donor site of exon 5. TOPO-TA cloning confirmed that exon 5 was completely skipped, resulting in a truncated protein. No PKCƎĀ“ protein was detected in the patient's neutrophils and monocyte-derived macrophages. The monocyte-derived macrophages of the patient produced abnormally low levels of ROS, as shown in an Amplex Red assay. CONCLUSION: PKCƎĀ“ deficiency should be considered in young patients with CGD-like clinical manifestations and abnormal DHR assay results, even in the absence of clinical and biological manifestations of autoimmunity.


Subject(s)
Granulomatous Disease, Chronic , Child , Child, Preschool , Female , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , Humans , NADPH Oxidases/genetics , RNA Splice Sites , Reactive Oxygen Species , Respiratory Burst
3.
J Clin Immunol ; 42(2): 336-349, 2022 02.
Article in English | MEDLINE | ID: mdl-34791587

ABSTRACT

BACKGROUND: CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE: We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS: The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55Ā kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61Ā kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS: CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.


Subject(s)
Candidiasis, Chronic Mucocutaneous , Alleles , Animals , CARD Signaling Adaptor Proteins/genetics , Gene Dosage , Homozygote , Humans , Mice , Phenotype
4.
Am J Med Genet A ; 188(1): 259-268, 2022 01.
Article in English | MEDLINE | ID: mdl-34510712

ABSTRACT

Sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD; MIM #616084) is an autosomal recessive disorder of mitochondrial and cytosolic tRNA processing caused by pathogenic, biallelic variants in TRNT1. Other features of this disorder include central nervous system, renal, cardiac, ophthalmological features, and sensorineural hearing impairment. SIFD was first described in 2013 and to date, it has been reported in 46 patients. Herein, we review the literature and describe two siblings with SIFD and note the novel phenotype of hypoglycemia in the context of growth hormone (GH) deficiency. GH deficiency without hypoglycemia has previously been reported in three patients with SIFD, but GH deficiency had not been firmly ascribed to SIFD. We propose to expand the phenotype to include GH deficiency, hypoglycemia, and previously unreported dysmorphic features. Furthermore, we highlight the intrafamilial variability of the disease by the discordance of our patients' clinical phenotypes and biochemical profiles measured by untargeted metabolomics analysis. Several metabolomic abnormalities were observed in both patients, and these may represent a potential biochemical signature for SIFD.


Subject(s)
Anemia, Sideroblastic , Anemia, Sideroblastic/genetics , Fever/complications , Fever/genetics , Humans , Mutation , Nucleotidyltransferases/genetics , Phenotype
5.
J Allergy Clin Immunol ; 148(6): 1442-1450, 2021 12.
Article in English | MEDLINE | ID: mdl-34688776

ABSTRACT

Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.


Subject(s)
COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , Primary Immunodeficiency Diseases , Humans , Metabolism, Inborn Errors , SARS-CoV-2
6.
Ann Allergy Asthma Immunol ; 127(6): 617-626, 2021 12.
Article in English | MEDLINE | ID: mdl-34481993

ABSTRACT

OBJECTIVE: To review the different causes of secondary immunodeficiencies and provide clinicians with an updated overview of potential factors that contribute to immunodeficiency. DATA SOURCES: Recent published literature obtained through PubMed database searches, including research articles, review articles, and case reports. STUDY SELECTIONS: PubMed database searches were conducted using the following keywords: immunodeficiency, antibody deficiency, immunosuppressive drugs, genetic syndrome, malignancy, HIV infection, viral infection, secondary immunodeficiency, nutrition, prematurity, aging, protein-losing enteropathy, nephropathy, trauma, space travel, high altitude, and ultraviolet light. Studies published in the last decade and relevant to the pathogenesis, epidemiology, and clinical characteristics of secondary immunodeficiencies were selected and reviewed. RESULTS: Researchers continue to investigate and report abnormal immune parameters in the different entities collectively known as secondary immunodeficiencies. Immunodeficiency might occur as a consequence of malnutrition, metabolic disorders, use of immunosuppressive medications, chronic infections, malignancies, severe injuries, and exposure to adverse environmental conditions. The neonate and the elderly may have decreased immune responses relative to healthy adults. Each of these conditions may present with different immune defects of variable severity. The acquired immunodeficiency syndrome results from infections by the human immunodeficiency virus, which targets CD4 T cells leading to defective immune responses. Rituximab is a monoclonal antibody that targets CD20 B cells, and its use might result in persistent hypogammaglobulinemia. CONCLUSION: Clinicians should consider secondary immunodeficiencies in the differential diagnosis of a patient with recurrent infections and abnormal immunologic evaluation. The use of biological agents for the treatment of inflammatory conditions and malignancies is an increasingly important cause of secondary immunodeficiency.


Subject(s)
Immunologic Deficiency Syndromes , Acquired Immunodeficiency Syndrome , HIV Infections , Humans , Immunologic Deficiency Syndromes/etiology , Immunosuppressive Agents , Malnutrition , Metabolic Diseases , Neoplasms , Persistent Infection , Wounds and Injuries
8.
J Allergy Clin Immunol ; 142(4): 1041-1051, 2018 10.
Article in English | MEDLINE | ID: mdl-30170128

ABSTRACT

This manuscript reviews selected topics in primary immunodeficiency diseases (PIDDs) published in 2017. These include (1) the role of follicular T cells in the differentiation of BĀ cells and development of optimal antibody responses; (2)Ā impaired nuclear factor κB subunit 1 signaling in the pathogenesis of common variable immunodeficiency, revealing an association between impaired B-cell maturation and development of inflammatory conditions; (3) autoimmune and inflammatory manifestations in patients with PIDDs in T- and B-cell deficiencies, as well as in neutrophil disorders; (4) newly described gene defects causing PIDDs, including exostosin-like 3 (EXTL3), TNF-α-induced protein 3 (TNFAIP3 [A20]), actin-related protein 2/3 complex-subunit 1B (ARPC1B), v-Rel avian reticuloendotheliosis viral oncogene homolog AĀ (RELA), hypoxia upregulated 1 (HYOU1), BTB domain and CNC homolog 2 (BACH2), CD70, and CD55; (5) use of rapamycin and the phosphoinositide 3-kinase inhibitor leniolisib to reduce autoimmunity and regulate B-cell function in the activated phosphoinositide 3-kinase ƎĀ“ syndrome; (6) improved outcomes in hematopoietic stem cell transplantation for severe combined immunodeficiency (SCID) in the last decade, with an overall 2-year survival of 90% in part caused by early diagnosis through implementation of universal newborn screening; (7) demonstration of the efficacy of lentiviral vector-mediated gene therapy for patients with adenosine deaminase-deficient SCID; (8) the promise of gene editing for PIDDs using CRISPR/Cas9 and zinc finger nuclease technology for SCID and chronic granulomatous disease; and (9) the efficacy of thymus transplantation in Europe, although associated with an unexpected high incidence of autoimmunity. The remarkable progress in the understanding and management of PIDDs reflects the current interest in this area and continues to improve the care of immunodeficient patients.


Subject(s)
Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/therapy , Animals , Autoimmunity , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans , NF-kappa B p50 Subunit/immunology , Splenectomy , T-Lymphocytes, Helper-Inducer/immunology , Thymectomy
9.
J Allergy Clin Immunol ; 140(4): 959-973, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28826774

ABSTRACT

Advances in basic immunology in 2016 included studies that further characterized the role of different proteins in the differentiation of effector T and B cells, including cytokines and proteins involved in the actin cytoskeleton. Regulation of granule formation and secretion in cytotoxic cells was also further described by examining patients with familial hemophagocytic lymphohistiocytosis. The role of prenylation in patients with mevalonate kinase deficiency leading to inflammation has been established. We reviewed advances in clinical immunology, as well as new approaches of whole-genome sequencing and genes newly reported to be associated with immunodeficiency, such as linker of activation of T cells (LAT); B-cell CLL/lymphoma 11B (BCL11B); RGD, leucine-rich repeat, tropomodulin domain, and proline-rich domain-containing protein (RLTPR); moesin; and Janus kinase 1 (JAK1). Trials of hematopoietic stem cell transplantation and gene therapy for primary immunodeficiency have had relative success; the use of autologous virus-specific cytotoxic T cells has proved effective as well. New medications are being explored, such as pioglitazone, which is under study for its role in enhancing the oxidative burst in patients with chronic granulomatous disease. Development of vaccines for HIV infection continues to provide insight into the immune response against a virus with an extraordinary mutation rate.


Subject(s)
Allergy and Immunology/trends , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes/therapy , Immunotherapy/methods , Thiazolidinediones/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Clinical Trials as Topic , High-Throughput Nucleotide Sequencing , Humans , Immunologic Deficiency Syndromes/genetics , Membrane Proteins/genetics , Microfilament Proteins/genetics , Pioglitazone , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics
10.
J Allergy Clin Immunol ; 139(3S): S1-S46, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28041678

ABSTRACT

Human immunoglobulin preparations for intravenous or subcutaneous administration are the cornerstone of treatment in patients with primary immunodeficiency diseases affecting the humoral immune system. Intravenous preparations have a number of important uses in the treatment of other diseases in humans as well, some for which acceptable treatment alternatives do not exist. We provide an update of the evidence-based guideline on immunoglobulin therapy, last published in 2006. Given the potential risks and inherent scarcity of human immunoglobulin, careful consideration of its indications and administration is warranted.


Subject(s)
Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins/therapeutic use , Immunologic Deficiency Syndromes/therapy , Animals , Evidence-Based Medicine , Humans , Immunity, Humoral , Immunologic Deficiency Syndromes/immunology , Immunomodulation , Injections, Subcutaneous , Practice Guidelines as Topic
11.
J Allergy Clin Immunol ; 139(1): 232-245, 2017 01.
Article in English | MEDLINE | ID: mdl-27577878

ABSTRACT

BACKGROUND: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE: We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS: Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30Ā Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION: This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , DNA Copy Number Variations , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Young Adult
12.
Clin Infect Dis ; 75(9): 1665-1667, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36308735
13.
J Allergy Clin Immunol ; 138(6): 1531-1540, 2016 12.
Article in English | MEDLINE | ID: mdl-27931534

ABSTRACT

Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy.


Subject(s)
Allergy and Immunology/trends , DNA Helicases/genetics , Immunologic Deficiency Syndromes/genetics , Killer Cells, Natural/physiology , rab GTP-Binding Proteins/genetics , Animals , Genetic Therapy , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/therapy , rab27 GTP-Binding Proteins
15.
J Allergy Clin Immunol ; 135(5): 1132-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25956014

ABSTRACT

Genetic identification of immunodeficiency syndromes has become more efficient with the availability of whole-exome sequencing, expediting the identification of relevant genes and complementing traditional linkage analysis and homozygosity mapping. New genes defects causing immunodeficiency include phophoglucomutase 3 (PGM3), cytidine 5' triphosphate synthase 1 (CTPS1), nuclear factor κB-inducing kinase (NIK), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10), phosphoinositide-3 kinase regulatory subunit 1 (PIK3R1), IL21, and Jagunal homolog 1 (JAGN1). New case reports expanded the clinical spectrum of gene defects. For example, a specific recombination-activating gene 1 variant protein with partial recombinant activity might produce Omenn syndrome or a common variable immunodeficiency phenotype. Central and peripheral B-cell tolerance was investigated in patients with several primary immunodeficiencies, including common variable immunodeficiency and Wiskott-Aldrich syndrome, to explain the occurrence of autoimmunity and inflammatory disorders. The role of IL-12 and IL-15 in the enhancement of natural killer cell activity was reported. Newborn screening for T-cell deficiency is being implemented in more states and is achieving its goal of defining the true incidence of severe combined immunodeficiency and providing early treatment that offers the highest survival for these patients. Definitive treatment of severe immunodeficiency with both hematopoietic stem cell transplantation and gene therapy was reported to be successful, with increasing definition of conditions needed for optimal outcomes. Progress in HIV infection is directed toward the development of an effective vaccine and the eradication of hidden latent virus reservoirs.


Subject(s)
Allergy and Immunology , Allergy and Immunology/history , Disease Management , HIV Infections/immunology , History, 21st Century , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Infant, Newborn , Neonatal Screening , Opportunistic Infections/etiology
16.
J Allergy Clin Immunol ; 136(5): 1186-205.e1-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26371839

ABSTRACT

The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.


Subject(s)
Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/therapy , Advisory Committees , Animals , Clinical Trials as Topic , Disease Management , Evidence-Based Medicine , Humans
18.
J Allergy Clin Immunol ; 133(4): 967-76, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24589342

ABSTRACT

A significant number of contributions to our understanding of primary immunodeficiencies (PIDs) in pathogenesis, diagnosis, and treatment were published in the Journal in 2013. For example, deficiency of mast cell degranulation caused by signal transducer and activator of transcription 3 deficiency was demonstrated to contribute to the difference in the frequency of severe allergic reactions in patients with autosomal dominant hyper-IgE syndrome compared with that seen in atopic subjects with similar high IgE serum levels. High levels of nonglycosylated IgA were found in patients with Wiskott-Aldrich syndrome, and these abnormal antibodies might contribute to the nephropathy seen in these patients. New described genes causing immunodeficiency included caspase recruitment domain 11 (CARD11), mucosa-associated lymphoid tissue 1 (MALT1) for combined immunodeficiencies, and tetratricopeptide repeat domain 7A (TTC7A) for mutations associated with multiple atresia with combined immunodeficiency. Other observations expand the spectrum of clinical presentation of specific gene defects (eg, adult-onset idiopathic T-cell lymphopenia and early-onset autoimmunity might be due to hypomorphic mutations of the recombination-activating genes). Newborn screening in California established the incidence of severe combined immunodeficiency at 1 in 66,250 live births. The use of hematopoietic stem cell transplantation for PIDs was reviewed, with recommendations to give priority to research oriented to establish the best regimens to improve the safety and efficacy of bone marrow transplantation. These represent only a fraction of significant research done in patients with PIDs that has accelerated the quality of care of these patients. Genetic analysis of patients has demonstrated multiple phenotypic expressions of immune deficiency in patients with nearly identical genotypes, suggesting that additional genetic factors, possibly gene dosage, or environmental factors are responsible for this diversity.


Subject(s)
Allergy and Immunology/trends , Animals , Humans , Immune System Diseases/diagnosis , Immune System Diseases/etiology , Immune System Diseases/therapy , Infant, Newborn , Neonatal Screening , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL