Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cancer Ther ; 18(12): 2207-2219, 2019 12.
Article in English | MEDLINE | ID: mdl-31530649

ABSTRACT

Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A-selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition-associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A-selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.


Subject(s)
Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Mitosis/drug effects , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , HeLa Cells , Humans , Male
2.
Cancer Discov ; 9(2): 248-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30373917

ABSTRACT

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Enzyme Inhibitors/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Retinoblastoma Binding Proteins/genetics , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
3.
Mol Cell Biol ; 23(1): 163-77, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12482970

ABSTRACT

Sphingolipid metabolism is implicated to play an important role in apoptosis. Here we show that dihydrosphingosine (DHS) and phytosphingosine (PHS), two major sphingoid bases of fungi, have potent fungicidal activity with remarkably high structural and stereochemical specificity against Aspergillus nidulans. In fact, only naturally occurring DHS and PHS are active. Further analysis revealed that DHS and PHS induce rapid DNA condensation independent of mitosis, large-scale DNA fragmentation, and exposure of phosphatidylserine, all common morphological features characteristic of apoptosis, suggesting that DHS and PHS induce apoptosis in A. nidulans. The finding that DNA fragmentation requires protein synthesis, which implies that an active process is involved, further supports this proposition. The induction of apoptosis by DHS and PHS is associated with the rapid accumulation of reactive oxygen species (ROS). However, ROS are not required for apoptosis induced by DHS and PHS, as scavenging of ROS by a free radical spin trap has no effect. We further demonstrate that apoptosis induced by DHS and PHS is independent of metacaspase function but requires mitochondrial function. Together, the results suggest that DHS and PHS induce a type of apoptosis in A. nidulans most similar to the caspase-independent apoptosis observed in mammalian systems. As A. nidulans is genetically tractable, this organism should be an ideal model system for dissecting sphingolipid signaling in apoptosis and, importantly, for further elucidating the molecular basis of caspase-independent apoptosis.


Subject(s)
Apoptosis/physiology , Aspergillus nidulans/cytology , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Apoptosis/drug effects , Aspergillus nidulans/drug effects , Aspergillus nidulans/metabolism , Base Sequence , Biomarkers , Caspases/genetics , Caspases/metabolism , DNA Fragmentation , DNA, Fungal/drug effects , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Deletion , Mitochondria/drug effects , Mitochondria/metabolism , Mitosis , Molecular Sequence Data , Mutation , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sphingosine/chemistry , Sphingosine/pharmacology , Structure-Activity Relationship
4.
Cancer Cell ; 32(6): 761-776.e6, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29232554

ABSTRACT

Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cyclin D/metabolism , Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Cyclin D/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
Biomark Insights ; 3: 147-157, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-19578502

ABSTRACT

BACKGROUND: Current drug therapy of atherosclerosis is focused on treatment of major risk factors, e.g. hypercholesterolemia while in the future direct disease modification might provide additional benefits. However, development of medicines targeting vascular wall disease is complicated by the lack of reliable biomarkers. In this study, we took a novel approach to identify circulating biomarkers indicative of drug efficacy by reducing the complexity of the in vivo system to the level where neither disease progression nor drug treatment was associated with the changes in plasma cholesterol. RESULTS: ApoE-/- mice were treated with an ACE inhibitor ramipril and HMG-CoA reductase inhibitor simvastatin. Ramipril significantly reduced the size of atherosclerotic plaques in brachiocephalic arteries, however simvastatin paradoxically stimulated atherogenesis. Both effects occurred without changes in plasma cholesterol. Blood and vascular samples were obtained from the same animals. In the whole blood RNA samples, expression of MMP9, CD14 and IL-1RN reflected pro-and anti-atherogenic drug effects. In the plasma, several proteins, e.g. IL-1beta, IL-18 and MMP9 followed similar trends while protein readout was less sensitive than RNA analysis. CONCLUSION: In this study, we have identified inflammation-related whole blood RNA and plasma protein markers reflecting anti-atherogenic effects of ramipril and pro-atherogenic effects of simwastatin in a mouse model of atherosclerosis. This opens an opportunity for early, non-invasive detection of direct drug effects on atherosclerotic plaques in complex in vivo systems.

6.
Eukaryot Cell ; 3(4): 932-43, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15302826

ABSTRACT

The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a beta-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and beta-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.


Subject(s)
Antifungal Agents/metabolism , Benzofurans/metabolism , Biological Assay/methods , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/metabolism , Amphotericin B/metabolism , Amphotericin B/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology , Candida albicans/drug effects , Candida albicans/enzymology , Drug Synergism , Enzyme Activation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Microbial Sensitivity Tests/methods , Molecular Structure , Phosphatidylserines/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/pharmacology , beta-Glucans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL