Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 179(6): 1409-1423.e17, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31778655

ABSTRACT

The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor ß (TGF-ß) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.


Subject(s)
Adaptation, Physiological , Feathers/anatomy & histology , Feathers/physiology , Flight, Animal/physiology , Animals , Biological Evolution , Birds/anatomy & histology , Cell Adhesion Molecules/metabolism , Cytoskeleton/metabolism , Dermis/anatomy & histology , Stem Cells/cytology , Time Factors , Transcriptome/genetics , Wnt Signaling Pathway/genetics
2.
STAR Protoc ; 2(3): 100661, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34278338

ABSTRACT

During morphogenesis, cellular sheets undergo dynamic folding to build functional forms. Here, we develop an image-based quantitative morphology field (QMorF) protocol that quantifies the morphological features of cellular structures and associated distributions. Using feather shafts with different rigidities as examples, QMorF performs coarse-graining statistical measurements of the fitted cellular objects over a micro-image stack, revealing underlying mechanical coupling and developmental clues. These images give intuitive representations of mechanical forces and should be useful for analyzing tissue images showing clear cellular features. For complete details on the use and execution of this protocol, please refer to Chang et al. (2019).


Subject(s)
Feathers/cytology , Image Processing, Computer-Assisted/methods , Animals , Chickens , Feathers/growth & development , Morphogenesis , Paraffin Embedding
SELECTION OF CITATIONS
SEARCH DETAIL