Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 141(22): 2738-2755, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36857629

ABSTRACT

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Prospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Blast Crisis , Drug Resistance, Neoplasm/genetics
2.
Blood ; 141(25): 3078-3090, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36796022

ABSTRACT

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Subject(s)
Core Binding Factors , Leukemia, Myeloid, Acute , Humans , Down-Regulation , Core Binding Factors/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Leukemia, Myeloid, Acute/genetics , Adenosine/metabolism
3.
Lancet Oncol ; 25(5): e205-e216, 2024 05.
Article in English | MEDLINE | ID: mdl-38697166

ABSTRACT

Multiple myeloma remains an incurable disease, despite the development of numerous drug classes and combinations that have contributed to improved overall survival. Immunotherapies directed against cancer cell-surface antigens, such as chimeric antigen receptor (CAR) T-cell therapy and T-cell-redirecting bispecific antibodies, have recently received regulatory approvals and shown unprecedented efficacy. However, these immunotherapies have unique mechanisms of action and toxicities that are different to previous treatments for myeloma, so experiences from clinical trials and early access programmes are essential for providing specific recommendations for management of patients, especially as these agents become available across many parts of the world. Here, we provide expert consensus clinical practice guidelines for the use of bispecific antibodies for the treatment of myeloma. The International Myeloma Working Group is also involved in the collection of prospective real-time data of patients treated with such immunotherapies, with the aim of learning continuously and adapting clinical practices to optimise the management of patients receiving immunotherapies.


Subject(s)
Antibodies, Bispecific , Consensus , Multiple Myeloma , T-Lymphocytes , Humans , Antibodies, Bispecific/therapeutic use , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immunotherapy/methods , Immunotherapy/standards , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects
4.
Haematologica ; 109(7): 2229-2238, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38235519

ABSTRACT

This multicenter, phase II study of the Australasian Lymphoma and Leukemia Group and the Asian Myeloma Network investigated fixed-duration (18-month) treatment with carfilzomib (K), thalidomide (T), and dexamethasone (d) (KTd) in patients with relapsed and/or refractory multiple myeloma who had received one to three prior lines of therapy. Patients received induction with up to 12 28-day cycles of carfilzomib (20 mg/m2 intravenously in cycle 1 on days 1 and 2, then 56 mg/m2 [36 mg/m2 for patients ≥75 years] from day 8 onwards), thalidomide 100 mg orally in the evening and weekly dexamethasone 40 mg (20 mg for patients ≥75 years). During maintenance, thalidomide was omitted, while carfilzomib was continued on days 1, 2, 15, and 16 with fortnightly dexamethasone. The primary endpoint was progression-free survival. Secondary endpoints were overall response rate, overall survival, duration of response, safety, and tolerability. Ninety-three patients (median age 66.3 years [range, 41.9-84.5]) were enrolled and followed up for a median of 26.4 months (range, 1.6-54.6). The median progression-free survival was 22.3 months (95% confidence interval: 15.7-25.6) and the 2-year progression-free survival was 46.3% (95% confidence interval: 35.1-52.8). The median overall survival was not reached and the 2-year overall survival was 73.8% (95% confidence interval: 62.9-81.9). The overall response rate was 88% (73% had a very good partial response or better). There was no difference in the depth of response, progression-free survival or overall survival comparing Asian and non-Asian cohorts (P=0.61). The safety profile of KTd was consistent with that of each individual drug. KTd is well tolerated and effective in patients with relapsed and/or refractory multiple myeloma irrespective of Asian or non-Asian ethnicity and provides an alternative treatment option, particularly in circumstances in which the use of carfilzomib, lenalidomide, and dexamethasone (KRd) is limited by access, cost, or renal impairment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Dexamethasone , Multiple Myeloma , Oligopeptides , Thalidomide , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Dexamethasone/adverse effects , Aged , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Oligopeptides/adverse effects , Female , Middle Aged , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Thalidomide/administration & dosage , Thalidomide/therapeutic use , Aged, 80 and over , Adult , Treatment Outcome , Drug Resistance, Neoplasm/drug effects , Recurrence
5.
Haematologica ; 109(6): 1893-1908, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38124661

ABSTRACT

REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.


Subject(s)
Chromosomes, Human, Pair 14 , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Multiple Myeloma , Translocation, Genetic , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Mice , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 4/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Phenotype , Inflammation/genetics , Inflammation/metabolism , Histones/metabolism , Repressor Proteins
6.
BMC Med Res Methodol ; 24(1): 102, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698331

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is the second most common haematological cancer worldwide. Along with related diseases including monoclonal gammopathy of undetermined significance (MGUS), plasma cell leukaemia (PCL) and plasmacytoma, MM incidence is rising, yet it remains incurable and represents a significant disease burden. Clinical registries can provide important information on management and outcomes, and are vital platforms for clinical trials and other research. The Asia-Pacific Myeloma and Related Diseases Registry (APAC MRDR) was developed to monitor and explore variation in epidemiology, treatment regimens and their impact on clinical outcomes across this region. Here we describe the registry's design and development, initial data, progress and future plans. METHODS: The APAC MRDR was established in 2018 as a multicentre collaboration across the Asia-Pacific, collecting prospective data on patients newly diagnosed with MM, MGUS, PCL and plasmacytoma in Korea, Singapore, Malaysia and Taiwan, with China recently joining. Development of the registry required a multidisciplinary team of clinicians, researchers, legal and information technology support, and financial resources, as well as local clinical context from key opinion leaders in the APAC region. Written informed consent is obtained and data are routinely collected throughout treatment by hospital staff. Data are stored securely, meeting all local privacy and ethics requirements. Data were collected from October 2018 to March 2024. RESULTS: Over 1700 patients from 24 hospitals have been enrolled onto the APAC MRDR to date, with the majority (86%) being newly diagnosed with MM. Bortezomib with an immunomodulatory drug was most frequently used in first-line MM therapy, and lenalidomide-based therapy was most common in second-line. Establishment and implementation challenges include regulatory and a range of operational issues. CONCLUSION: The APAC MRDR is providing 'real-world' data to participating sites, clinicians and policy-makers to explore factors influencing outcomes and survival, and to support high quality studies. It is already a valuable resource that will continue to grow and support research and clinical collaboration in MM and related diseases across the APAC region.


Subject(s)
Multiple Myeloma , Registries , Multiple Myeloma/epidemiology , Multiple Myeloma/therapy , Multiple Myeloma/diagnosis , Humans , Registries/statistics & numerical data , Asia/epidemiology , Male , Female , Taiwan/epidemiology , Malaysia/epidemiology , Singapore/epidemiology , Middle Aged , Republic of Korea/epidemiology , Prospective Studies
7.
Mol Cancer ; 22(1): 69, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032358

ABSTRACT

BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS: We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS: SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS: Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.


Subject(s)
Cell Transformation, Neoplastic , Lymphoma, Extranodal NK-T-Cell , Humans , Cell Transformation, Neoplastic/metabolism , Oncogenes , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Small Interfering/metabolism , Killer Cells, Natural/pathology , Cell Line, Tumor , HMGB Proteins/genetics , HMGB Proteins/metabolism
8.
Blood ; 135(26): 2337-2353, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32157296

ABSTRACT

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Subject(s)
Blast Crisis/genetics , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Polycomb Repressive Complex 1/physiology , Polycomb Repressive Complex 2/physiology , Cell Differentiation , Chromatin Immunoprecipitation , DNA Methylation , Datasets as Topic , Enhancer of Zeste Homolog 2 Protein/physiology , Gene Dosage , Gene Ontology , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Transcriptome , Exome Sequencing , Whole Genome Sequencing
9.
Haematologica ; 107(3): 680-689, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33691379

ABSTRACT

Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. In order to further investigate the role of this splice factor in RNA splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in both competitive and non-competitive reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not in human cells contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to accurately model ZRSR2-mutant MDS in mice.


Subject(s)
Myelodysplastic Syndromes , RNA Splicing , Ribonucleoproteins , Splicing Factor U2AF , Animals , Introns , Mice , Mutation , Myelodysplastic Syndromes/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Spliceosomes/genetics , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism
10.
Haematologica ; 107(8): 1864-1879, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35021606

ABSTRACT

Primary Epstein-Barr virus (EBV)-positive nodal T/NK-cell lymphoma (PTCL-EBV) is a poorly understood disease which shows features resembling extranodal NK/T-cell lymphoma (ENKTL) and is currently not recognized as a distinct entity but categorized as a variant of primary T-cell lymphoma not otherwise specified (PTCL-NOS). Herein, we analyzed copynumber aberrations (n=77) with a focus on global measures of genomic instability and homologous recombination deficiency and performed gene expression (n=84) and EBV miRNA expression (n=24) profiling as well as targeted mutational analysis (n=16) to further characterize PTCL-EBV in relation to ENKTL and PTCL-NOS. Multivariate analysis revealed that patients with PTCL-EBV had a significantly worse outcome compared to patients with PTCL-NOS (P=0.002) but not to those with ENKTL. Remarkably, PTCL-EBV exhibited significantly lower genomic instability and homologous recombination deficiency scores compared to ENKTL and PTCL-NOS. Gene set enrichment analysis revealed that many immune-related pathways, interferon α/γ response, and IL6_JAK_STAT3 signaling were significantly upregulated in PTCLEBV and correlated with lower genomic instability scores. We also identified that NFκB-associated genes, BIRC3, NFKB1 (P50) and CD27, and their proteins are upregulated in PTCL-EBV. Most PTCL-EBV demonstrated a type 2 EBV latency pattern and, strikingly, exhibited downregulated expression of most EBV miRNA compared to ENKTL and their target genes were also enriched in immune-related pathways. PTCL-EBV also showed frequent mutations of TET2, PIK3CD and STAT3, and are characterized by microsatellite stability. Overall, poor outcome, low genomic instability, upregulation of immune pathways and downregulation of EBV miRNA are distinctive features of PTCL-EBV. Our data support the concept that PTCL-EBV could be considered as a distinct entity, provide novel insights into the pathogenesis of the disease and offer potential new therapeutic targets for this tumor.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Extranodal NK-T-Cell , Lymphoma, T-Cell, Peripheral , MicroRNAs , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Genomic Instability , Herpesvirus 4, Human/genetics , Humans , Lymphoma, Extranodal NK-T-Cell/diagnosis , Lymphoma, Extranodal NK-T-Cell/genetics , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/genetics , MicroRNAs/genetics , Up-Regulation
11.
Eur J Haematol ; 109(5): 415-424, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35880386

ABSTRACT

OBJECTIVES: This review discusses the role of immune dysfunction at the different stages of multiple myeloma (MM). METHODS: Narrative review. RESULTS: MM is a complex disease and immune dysfunction has been known to play an important role in disease pathogenesis, progression, and drug resistance. MM is known to be preceded by asymptomatic precursor states and progression from the precursor states to MM is likely related to a progressive impairment of the immune system. CONCLUSIONS: An understanding of the role of the immune system in the progression of MM is important to guide the development of immunotherapeutic strategies for this disease.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Disease Progression , Humans , Monoclonal Gammopathy of Undetermined Significance/complications , Multiple Myeloma/drug therapy
12.
Eur J Haematol ; 109(5): 425-440, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35880395

ABSTRACT

OBJECTIVES: This paper reviews current and emerging therapies for multiple myeloma (MM). METHODS: Narrative review. RESULTS: MM is a complex, heterogenous condition, and in recent years there has been an expansion in the number and range of treatments. Several new treatment approaches, including enhanced monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engagers, and chimeric antigen-T-cell therapy are under development. CONCLUSIONS: The emergence of new treatments that aim to tackle MM-associated immune dysfunction has led to improvements in overall survival.


Subject(s)
Immunoconjugates , Multiple Myeloma , Antibodies, Monoclonal/therapeutic use , Humans , Immunoconjugates/therapeutic use , Immunotherapy , Immunotherapy, Adoptive , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy
13.
Am J Hematol ; 97(9): 1159-1169, 2022 09.
Article in English | MEDLINE | ID: mdl-35726449

ABSTRACT

With lowering costs of sequencing and genetic profiling techniques, genetic drivers can now be detected readily in tumors but current prognostic models for Natural-killer/T cell lymphoma (NKTCL) have yet to fully leverage on them for prognosticating patients. Here, we used next-generation sequencing to sequence 260 NKTCL tumors, and trained a genomic prognostic model (GPM) with the genomic mutations and survival data from this retrospective cohort of patients using LASSO Cox regression. The GPM is defined by the mutational status of 13 prognostic genes and is weakly correlated with the risk-features in International Prognostic Index (IPI), Prognostic Index for Natural-Killer cell lymphoma (PINK), and PINK-Epstein-Barr virus (PINK-E). Cox-proportional hazard multivariate regression also showed that the new GPM is independent and significant for both progression-free survival (PFS, HR: 3.73, 95% CI 2.07-6.73; p < .001) and overall survival (OS, HR: 5.23, 95% CI 2.57-10.65; p = .001) with known risk-features of these indices. When we assign an additional risk-score to samples, which are mutant for the GPM, the Harrell's C-indices of GPM-augmented IPI, PINK, and PINK-E improved significantly (p < .001, χ2 test) for both PFS and OS. Thus, we report on how genomic mutational information could steer toward better prognostication of NKTCL patients.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Extranodal NK-T-Cell , Disease-Free Survival , Genomics , Herpesvirus 4, Human , Humans , Prognosis , Retrospective Studies
14.
Cell Mol Life Sci ; 78(8): 3883-3906, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33599798

ABSTRACT

Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.


Subject(s)
Endoplasmic Reticulum Stress , Multiple Myeloma/pathology , Oxidative Stress , Signal Transduction , Animals , Humans , Multiple Myeloma/metabolism
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163134

ABSTRACT

Multiple myeloma (MM) is a hematological disease marked by abnormal growth of B cells in bone marrow. Inherent chromosomal instability and DNA damage are major hallmarks of MM, which implicates an aberrant DNA repair mechanism. Studies have implicated a role for CDK12 in the control of expression of DNA damage response genes. In this study, we examined the effect of a small molecule inhibitor of CDK12-THZ531 on MM cells. Treatment of MM cells with THZ531 led to heightened cell death accompanied by an extensive effect on gene expression changes. In particular, we observed downregulation of genes involved in DNA repair pathways. With this insight, we extended our study to identify synthetic lethal mechanisms that could be exploited for the treatment of MM cells. Combination of THZ531 with either DNA-PK inhibitor (KU-0060648) or PARP inhibitor (Olaparib) led to synergistic cell death. In addition, combination treatment of THZ531 with Olaparib significantly reduced tumor burden in animal models. Our findings suggest that using a CDK12 inhibitor in combination with other DNA repair inhibitors may establish an effective therapeutic regimen to benefit myeloma patients.


Subject(s)
Anilides/pharmacology , Biomarkers, Tumor/genetics , DNA Repair , Gene Expression Regulation, Neoplastic/drug effects , Multiple Myeloma/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pyrimidines/pharmacology , Synthetic Lethal Mutations , Animals , Apoptosis , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cell Proliferation , Drug Therapy, Combination , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Lancet Oncol ; 22(3): e105-e118, 2021 03.
Article in English | MEDLINE | ID: mdl-33662288

ABSTRACT

This Policy Review presents the International Myeloma Working Group's clinical practice recommendations for the treatment of relapsed and refractory multiple myeloma. Based on the results of phase 2 and phase 3 trials, these recommendations are proposed for the treatment of patients with relapsed and refractory disease who have received one previous line of therapy, and for patients with relapsed and refractory multiple myeloma who have received two or more previous lines of therapy. These recommendations integrate the issue of drug access in both low-income and middle-income countries and in high-income countries to help guide real-world practice and thus improve patient outcomes.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Practice Guidelines as Topic/standards , Salvage Therapy , Humans , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/pathology
17.
Blood ; 134(23): 2046-2058, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31434700

ABSTRACT

Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Extranodal NK-T-Cell/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Bortezomib/therapeutic use , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Humans , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, Extranodal NK-T-Cell/genetics , Lymphoma, Extranodal NK-T-Cell/pathology , Neoplasm Proteins/genetics , Phosphorylation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Stability , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination/genetics
18.
Lancet ; 393(10168): 253-264, 2019 01 19.
Article in English | MEDLINE | ID: mdl-30545780

ABSTRACT

BACKGROUND: Maintenance therapy following autologous stem cell transplantation (ASCT) can delay disease progression and prolong survival in patients with multiple myeloma. Ixazomib is ideally suited for maintenance therapy given its convenient once-weekly oral dosing and low toxicity profile. In this study, we aimed to determine the safety and efficacy of ixazomib as maintenance therapy following ASCT. METHODS: The phase 3, double-blind, placebo-controlled TOURMALINE-MM3 study took place in 167 clinical or hospital sites in 30 countries in Europe, the Middle East, Africa, Asia, and North and South America. Eligible participants were adults with a confirmed diagnosis of symptomatic multiple myeloma according to International Myeloma Working Group criteria who had achieved at least a partial response after undergoing standard-of-care induction therapy followed by high-dose melphalan (200 mg/m2) conditioning and single ASCT within 12 months of diagnosis. Patients were randomly assigned in a 3:2 ratio to oral ixazomib or matching placebo on days 1, 8, and 15 in 28-day cycles for 2 years following induction, high-dose therapy, and transplantation. The initial 3 mg dose was increased to 4 mg from cycle 5 if tolerated during cycles 1-4. Randomisation was stratified by induction regimen, pre-induction disease stage, and response post-transplantation. The primary endpoint was progression-free survival (PFS) by intention-to-treat analysis. Safety was assessed in all patients who received at least one dose of ixazomib or placebo, according to treatment actually received. This trial is registered with ClinicalTrials.gov, number NCT02181413, and follow-up is ongoing. FINDINGS: Between July 31, 2014, and March 14, 2016, 656 patients were enrolled and randomly assigned to receive ixazomib maintenance therapy (n=395) or placebo (n=261). With a median follow-up of 31 months (IQR 27·3-35·7), we observed a 28% reduction in the risk of progression or death with ixazomib versus placebo (median PFS 26·5 months [95% CI 23·7-33·8] vs 21·3 months [18·0-24·7]; hazard ratio 0·72, 95% CI 0·58-0·89; p=0·0023). No increase in second malignancies was noted with ixazomib therapy (12 [3%] patients) compared with placebo (eight [3%] patients) at the time of this analysis. 108 (27%) of 394 patients in the ixazomib group and 51 (20%) of 259 patients in the placebo group experienced serious adverse events. During the treatment period, one patient died in the ixazomib group and none died in the placebo group. INTERPRETATION: Ixazomib maintenance prolongs PFS and represents an additional option for post-transplant maintenance therapy in patients with newly diagnosed multiple myeloma. FUNDING: Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceutical Company.


Subject(s)
Antineoplastic Agents/administration & dosage , Boron Compounds/administration & dosage , Glycine/analogs & derivatives , Multiple Myeloma/drug therapy , Stem Cell Transplantation , Administration, Oral , Antineoplastic Agents/adverse effects , Boron Compounds/adverse effects , Disease Progression , Double-Blind Method , Female , Glycine/administration & dosage , Glycine/adverse effects , Humans , Male , Middle Aged , Multiple Myeloma/surgery , Time Factors , Transplantation, Autologous , Treatment Outcome
19.
Immunol Cell Biol ; 98(2): 138-151, 2020 02.
Article in English | MEDLINE | ID: mdl-31837284

ABSTRACT

Macrophages (Mϕ) have been reported to downmodulate the cytotoxicity of natural killer (NK) cell against solid tumor cells. However, the collaborative role between NK cells and Mϕ remains underappreciated, especially in hematological cancers, such as chronic myeloid leukemia (CML). We observed a higher ratio of innate immune cells (Mϕ and NK) to adaptive immune cells (T and B cells) in CML bone marrow aspirates, prompting us to investigate the roles of NK and Mϕ in CML. Using coculture models simulating the tumor inflammatory environment, we observed that Mϕ protects CML from NK attack only when CML was itself mycoplasma-infected and under chronic infection-inflammation condition. We found that the Mϕ-protective effect on CML was associated with the maintenance of CD16 level on the NK cell membrane. Although the NK membrane CD16 (mCD16) was actively shed in Mϕ + NK + CML trioculture, the NK mCD16 level was maintained, and this was independent of the modulation of sheddase by tissue inhibitor of metalloproteinase 1 or inhibitory cytokine transforming growth factor beta. Instead, we found that this process of NK mCD16 maintenance was conferred by Mϕ in a contact-dependent manner. We propose a new perspective on anti-CML strategy through abrogating Mϕ-mediated retention of NK surface CD16.


Subject(s)
Inflammation/immunology , Killer Cells, Natural/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Macrophages/immunology , Mycoplasma/immunology , Adaptive Immunity , B-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Cell Survival/immunology , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Interleukin-8/metabolism , Killer Cells, Natural/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/microbiology , Macrophages/microbiology , Receptors, IgG/immunology , Receptors, IgG/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Transforming Growth Factor beta/metabolism
20.
Blood ; 132(12): 1304-1317, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30061158

ABSTRACT

DNA alterations have been extensively reported in multiple myeloma (MM); however, they cannot yet fully explain all the biological and molecular abnormalities in MM, which remains to this day an incurable disease with eventual emergence of refractory disease. Recent years have seen abnormalities at the RNA levels being reported to possess potential biological relevance in cancers. ADAR1-mediated A-to-I editing is an important posttranscriptional mechanism in human physiology, and the biological implication of its abnormality, especially at the global level, is underexplored in MM. In this study, we define the biological implications of A-to-I editing and how it contributes to MM pathogenesis. Here, we identified that the MM transcriptome is aberrantly hyperedited because of the overexpression of ADAR1. These events were associated with patients' survival independent of 1q21 amplifications and could affect patients' responsiveness to different treatment regimes. Our functional assays established ADAR1 to be oncogenic, driving cellular growth and proliferation in an editing-dependent manner. In addition, we identified NEIL1 (base-excision repair gene) as an essential and a ubiquitously edited ADAR1 target in MM. The recoded NEIL1 protein showed defective oxidative damage repair capacity and loss-of-function properties. Collectively, our data demonstrated that ADAR1-mediated A-to-I editing is both clinically and biologically relevant in MM. These data unraveled novel insights into MM molecular pathogenesis at the global RNA level.


Subject(s)
Adenosine Deaminase/genetics , Gene Expression Regulation, Neoplastic , Multiple Myeloma/genetics , RNA-Binding Proteins/genetics , Transcriptome , Up-Regulation , Animals , Cell Line, Tumor , DNA Glycosylases/genetics , Humans , Mice , Mice, SCID , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Prognosis , RNA Editing
SELECTION OF CITATIONS
SEARCH DETAIL