Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38794887

ABSTRACT

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Subject(s)
Antifungal Agents , Aspergillus flavus , Coculture Techniques , Lactobacillales , Metabolomics , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Lactobacillales/metabolism , Lactobacillales/growth & development , Fermentation , Aflatoxins/biosynthesis , Edible Grain/microbiology , Pediococcus pentosaceus/metabolism , Antibiosis , Food Microbiology
2.
Molecules ; 25(4)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079067

ABSTRACT

Red ginseng has been reported to elicit various therapeutic effects relevant to cancer, diabetes, neurodegenerative diseases, and inflammatory diseases. However, the effect of red ginseng on exercise endurance and skeletal muscle function remains unclear. Herein, we sought to investigate whether red ginseng could affect exercise endurance and examined its molecular mechanism. Mice were fed with red ginseng extract (RG) and undertook swimming exercises to determine the time to exhaustion. Animals fed with RG had significantly longer swimming endurance. RG treatment was also observed to enhance ATP production levels in myoblasts. RG increased mRNA expressions of mitochondrial biogenesis regulators, NRF-1, TFAM, and PGC-1α, which was accompanied by an elevation in mitochondrial DNA, suggesting an enhancement in mitochondrial energy-generating capacity. Importantly, RG treatment induced phosphorylation of p38 and AMPK and upregulated PGC1α expression in both myoblasts and in vivo muscle tissue. In addition, RG treatment also stimulated C2C12 myogenic differentiation. Our findings show that red ginseng improves exercise endurance, suggesting that it may have applications in supporting skeletal muscle function and exercise performance.


Subject(s)
Mitochondria/drug effects , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Panax/chemistry , Physical Endurance/drug effects , Plant Extracts/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Cell Differentiation/drug effects , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , High Mobility Group Proteins/genetics , High Mobility Group Proteins/metabolism , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , Physical Endurance/physiology , Plant Extracts/isolation & purification , Swimming/physiology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Int J Mol Sci ; 19(9)2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30235870

ABSTRACT

The edible and medicinal perennial herb Aster scaber is known to have anticancer, antioxidant, and immunomodulatory properties. However, the biological effects of its polysaccharides are not well understood. Here, we aimed to extract novel polysaccharides with enhanced biological properties from Aster scaber using enzyme-assisted methods. Amylase, cellulase, and pectinase were used to extract enzyme-assisted polysaccharide (ASEP)-A, ASEP-C, and ASEP-P, respectively. The yields, physicochemical properties, and immunostimulatory activities of the polysaccharides were investigated and compared with those of hot water extracted polysaccharide (ASWP). The highest yield (3.8%) was achieved for ASEP-P extracted using pectinase digestion. Fourier-transform infrared spectroscopy (FT-IR) and chemical composition analysis revealed that ASWP and three ASEPs were typical acidic heteropolysaccharides, mainly comprising rhamnose, arabinose, galactose, glucose, and galacturonic acid. Immunostimulatory activity assays on RAW264.7 macrophages showed ASEP-P to have the greatest immunostimulatory potential in terms of nitric oxide (NO) and cytokine productions and phagocytic activity. ASEP-P administration improved immune-enhancing effects in normal mice by improving the spleen index and splenic lymphocyte proliferation, and in immunosuppressed mice by modulating lymphocyte proliferation, natural killer (NK) cell activity, and leukocyte counts. The ASEP-P derived from pectinase hydrolysate of Aster scaber demonstrated efficacious immunostimulatory properties and has potential applications as an immune stimulator.


Subject(s)
Adjuvants, Immunologic/chemistry , Anti-Infective Agents/chemistry , Aster Plant/chemistry , Plant Extracts/chemistry , Polysaccharides/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Anti-Infective Agents/pharmacology , Cell Line , Cells, Cultured , Lymphocytes/drug effects , Male , Mice , Phagocytosis/drug effects , Plant Extracts/pharmacology , Polygalacturonase/chemistry , Polysaccharides/pharmacology , Sugars/analysis
4.
Int J Mol Sci ; 19(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149526

ABSTRACT

Opuntia humifusa is a type of cactus whose fruits have been used in folk medicine for the treatment of several diseases. In the present study, we aimed to determine whether O. humifusa fruit water extract (OHE) has inhibitory effects against solar ultraviolet (sUV)-induced matrix metalloproteinase-1 (MMP-1) expression. In ex vivo human skin, we found that OHE suppressed sUV radiation-induced MMP-1 expression. The inhibitory effect of OHE was confirmed in human dermal fibroblasts. OHE treatment reduced sUV-induced MMP-1 expression by suppressing reactive oxygen species (ROS) generation and phosphorylation of c-Jun, a component of transcription factor activator protein 1 (AP-1). On the other hand, OHE recovered the tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and type 1 collagen production attenuated by sUV. As upstream signaling pathways for AP-1, MKK4-JNK, MEK-ERK, and MKK3/6-p38 phosphorylation were downregulated by OHE treatment. In addition, OHE exhibited DPPH radical scavenging activity. These findings demonstrate that OHE has a preventive effect against sUV-induced skin damage via suppression of pathways triggered by ROS.


Subject(s)
Fruit/chemistry , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Matrix Metalloproteinase 1/genetics , Opuntia/chemistry , Plant Extracts/pharmacology , Sunlight , Ultraviolet Rays , Biomarkers , Cell Survival/drug effects , Cell Survival/radiation effects , Chromatography, High Pressure Liquid , Collagen Type I/genetics , Collagen Type I/metabolism , Humans , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Spectrometry, Mass, Electrospray Ionization , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
5.
Mediators Inflamm ; 2017: 3859856, 2017.
Article in English | MEDLINE | ID: mdl-28751820

ABSTRACT

We recently reported the immune-enhancing effects of a high-molecular-weight fraction (HMF) of CW in macrophages and immunosuppressed mice, and this effect was attributed to a crude polysaccharide. As polysaccharides may also have anti-inflammatory functions, we investigated the anti-inflammatory effects and related molecular mechanisms of a crude polysaccharide (HMFO) obtained from HMF of CW in mice with dextran sulfate sodium- (DSS-) induced colitis and in lipopolysaccharide-induced RAW 264.7 macrophages. HMFO ameliorated the pathological characteristics of colitis and significantly reduced production of proinflammatory cytokines in the serum. Histological analysis indicated that HMFO improved the signs of histological damage such as abnormal crypts, crypt loss, and inflammatory cell infiltration induced by DSS. In addition, HMFO inhibited iNOS and COX-2 protein expression, as well as phosphorylated NF-κB p65 levels in the colon tissue of mice with DSS-induced colitis. In macrophages, HMFO inhibited several cytokines and enzymes involved in inflammation such as prostaglandin E2, nitric oxide, tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 by attenuating nuclear factor-κB (NF-κB) and mitogen-activated protein kinases. HMFO attenuated inflammation both in vitro and in vivo, primarily by inhibiting NF-κB activation. Our findings indicate that HMFO is a promising remedy for treating inflammatory bowel diseases, such as colitis.


Subject(s)
Colitis/chemically induced , Colitis/drug therapy , Cynanchum/chemistry , Dextran Sulfate/toxicity , Macrophages/metabolism , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Mice , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells
6.
Molecules ; 19(4): 5266-77, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24762965

ABSTRACT

Makgeolli is a traditional Korean rice wine, reported to have various biological functions. In this study, the immunostimulatory activity of a polysaccharide from makgeolli (PSM) was investigated. The polysaccharide fraction was isolated from makgeolli by hot water extraction, ethanol precipitation, dialysis, and lyophilization. The major constituents in PSM were neutral sugars (87.3%). PSM was composed of five different sugars, glucose, mannose, galactose, xylose, and arabinose. In normal mice, PSM treatment increased the spleen index (p<0.05) as well as splenocyte proliferation (p<0.05) in combination with concanavalin A or lipopolysaccharide. The immunostimulatory activities of PSM were also examined in cyclophosphamide (CY)-induced immunosuppressed mice. Mice treated with PSM exhibited increased splenocyte proliferation (p<0.05), natural killer cell activity, and white blood cell counts (p<0.01) compared with immunosuppressed mice. These results indicate that PSM can enhance immune function in normal mice and CY-induced immunosuppressed mice.


Subject(s)
Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Polysaccharides/pharmacology , Spleen/drug effects , Wine/analysis , Animals , Cell Proliferation/drug effects , Concanavalin A/pharmacology , Cyclophosphamide/pharmacology , Fermentation , Immunologic Factors/isolation & purification , Immunosuppressive Agents/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lipopolysaccharides/pharmacology , Liquid-Liquid Extraction , Male , Mice , Oryza/chemistry , Polysaccharides/isolation & purification , Spleen/cytology , Spleen/immunology
7.
AMB Express ; 14(1): 14, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282124

ABSTRACT

Efficient utilization of galactose by microorganisms can lead to the production of valuable bio-products and improved metabolic processes. While Bacillus subtilis has inherent pathways for galactose metabolism, there is potential for enhancement via evolutionary strategies. This study aimed to boost galactose utilization in B. subtilis using adaptive laboratory evolution (ALE) and to elucidate the genetic and metabolic changes underlying the observed enhancements. The strains of B. subtilis underwent multiple rounds of adaptive laboratory evolution (approximately 5000 generations) in an environment that favored the use of galactose. This process resulted in an enhanced specific growth rate of 0.319 ± 0.005 h-1, a significant increase from the 0.03 ± 0.008 h-1 observed in the wild-type strains. Upon selecting the evolved strain BSGA14, a comprehensive whole-genome sequencing revealed the presence of 63 single nucleotide polymorphisms (SNPs). Two of them, located in the coding sequences of the genes araR and glcR, were found to be the advantageous mutations after reverse engineering. The strain with these two accumulated mutations, BSGALE4, exhibited similar specific growth rate on galactose to the evolved strain BSGA14 (0.296 ± 0.01 h-1). Furthermore, evolved strain showed higher productivity of protease and ß-galactosidase in mock soybean biomass medium. ALE proved to be a potent tool for enhancing galactose metabolism in B. subtilis. The findings offer valuable insights into the potential of evolutionary strategies in microbial engineering and pave the way for industrial applications harnessing enhanced galactose conversion.

8.
Foods ; 13(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928762

ABSTRACT

Recent assessments of the correlations between food and medicine underscore the importance of functional foods in disease prevention and management. Functional foods offer health benefits beyond basic nutrition, with fresh fruits and vegetables being particularly prominent because of their rich polyphenol content. In this study, we elucidated the phytochemicals in ice plant (Mesembryanthemum crystallinum), a globally consumed vegetable, using an LC-QTOF/MS-based untargeted detection method. The phytochemicals were clustered based on their structural similarity using molecular networking and annotated using the in silico tool for network annotation propagation. To identify the bioactive compounds, eight compounds were isolated from ice plant extracts. These compounds were identified using extensive spectroscopic methods, including 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, we evaluated the antioxidant and anti-inflammatory activities of all the isolates. Among the tested compounds, three showed antioxidant activity and all eight showed anti-inflammatory activity, demonstrating the potential of ice plant as a functional food.

9.
Polymers (Basel) ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732748

ABSTRACT

A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-ß1-induced epithelial-mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and its underlying molecular mechanisms in HT-29 and HCT-116 human colon cancer cells. We conducted a wound-healing assay, invasion assay, qRT-PCR analysis, western blot analysis, gelatin zymography, luciferase assay, and small interfering RNA gene silencing in colon cancer cells. PLE0 concentration-dependently inhibited metastasis by suppressing cell migration and invasion. The suppression of N-cadherin and vimentin expression as well as upregulation of E-cadherin through the reduction of p-GSK3ß and ß-catenin levels resulted in the outcome of this effect. PLE0 also suppressed the expression and enzymatic activity of matrix metalloproteinases (MMP)-2 and MMP-9, while simultaneously increasing the protein and mRNA levels of the tissue inhibitor of metalloproteinases (TIMP-1). Furthermore, signaling data disclosed that PLE0 suppressed the transcriptional activity and phosphorylation of p65 (a subunit of NF-κB), as well as the phosphorylation of c-Jun and c-Fos (subunits of AP-1) pathway. PLE0 markedly suppressed JNK phosphorylation, and JNK knockdown significantly restored PLE0-regulated MMP-2/-9 and TIMP-1 expression. Collectively, our data indicate that PLE0 exerts an anti-metastatic effect in human colon cancer cells by inhibiting epithelial-mesenchymal transition and MMP-2/9 via downregulation of GSK3ß/ß-catenin and JNK signaling.

10.
Biosci Biotechnol Biochem ; 77(7): 1424-9, 2013.
Article in English | MEDLINE | ID: mdl-23832362

ABSTRACT

Cirsium setidens is a perennial medicinal herb that is rich in flavonoids. We investigated in this study the effect of a C. setidens ethanol extract (CSE) on the development of nonalcoholic fatty liver in mice fed a high-fat diet (HF). C57BL/6J mice were fed either a control diet (CON) or HF for 8 weeks, and then fed CON, HF, or HF with 100 mg/kg of BW CSE (HF+CSE) for an additional 7 weeks. The final body weight and adipose tissue weight of the mice in the HF+CSE group were significantly lower than those in the HF group. CSE also markedly diminished both the lipid droplets in the liver tissues and decreased the hepatic and serum triglycerides (TG) concentrations. CSE strongly increased the hepatic mRNA levels of carnitine palmitoyltransferase (CPT1) and medium-chain acyl-CoA dehydrogenase (MCAD), the fatty acid ß-oxidation enzymes. The hepatic levels of phosphorylated-AMP-activated protein kinase (AMPK) were significantly higher in the HF+CSF group than in the HF group. These results suggest that CSE inhibited hepatic fat accumulation by up-regulating the expression of the fatty acid ß-oxidation genes.


Subject(s)
Cirsium/chemistry , Diet, High-Fat/adverse effects , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Fatty Liver/blood , Fatty Liver/chemically induced , Fatty Liver/drug therapy , Fatty Liver/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/chemically induced , Obesity/drug therapy , Obesity/metabolism , Oxidation-Reduction/drug effects , Phosphorylation/drug effects , Plant Extracts/therapeutic use , Triglycerides/blood
11.
Biotechnol Lett ; 35(7): 1017-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23515895

ABSTRACT

A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.


Subject(s)
Enzymes/metabolism , Ginsenosides/isolation & purification , Hydrostatic Pressure , Panax/chemistry , Biotechnology/methods
12.
BMC Complement Altern Med ; 13: 106, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23680047

ABSTRACT

BACKGROUND: Hwangryun-haedok-tang (HRT) is traditional herbal medicine used to treat inflammatory-related diseases in Asia. However, its effect on osteoclastogenesis and bone loss is still unknown. In this study, we evaluated the effect of HRT and its fermented product (fHRT) on the receptor activator for the nuclear factor-κB ligand-induced osteoclastogenesis using murine bone marrow-derived macrophages and postmenopausal bone loss using an ovariectomy (OVX) rat model. METHODS: Tartrate resistant acid phosphatase (TRAP) staining was employed to evaluate osteoclast formation. mRNA level of transcription factor and protein levels of signaling molecules were determined by real-time quantitative polymerase chain reaction and Western blot analysis, respectively. Effect of HRT or fHRT on OVX-induced bone loss was evaluated using OVX rats orally administered HRT, or fHRT with 300 mg/kg for 12 weeks. Micro-CT analysis of femora was performed to analyze bone parameter. RESULTS: HRT or fHRT treatment significantly decreased TRAP activity and the number of TRAP positive multinuclear cells on osteoclastogenesis. Interestingly, these inhibitory effects of HRT were enhanced by fermentation. Furthermore, fHRT significantly inhibited mRNA and protein expression of nuclear factor of activated T cells cytoplasmic 1, which leads to down-regulation of NFATc1-regulated mRNA expressions such as TRAP, the d2 isoform of vacuolar ATPase V(0) domain, and cathepsin K. Administration of fHRT significantly inhibited the decrease of bone mineral density, and improved bone parameter of femora more than that of HRT and vehicle in OVX rats. CONCLUSIONS: This study demonstrated that lactic bacterial fermentation fortifies the inhibitory effect of HRT on osteoclastogenesis and bone loss. These results suggest that fermented HRT might have the beneficial potential on osteoporosis by inhibiting osteoclastogenesis.


Subject(s)
Bone Density/drug effects , Bone and Bones/drug effects , Drugs, Chinese Herbal/therapeutic use , Lactobacillus , Osteoclasts/drug effects , Osteoporosis, Postmenopausal/drug therapy , Phytotherapy , Animals , Bone Resorption/metabolism , Bone Resorption/prevention & control , Bone and Bones/cytology , Bone and Bones/metabolism , Down-Regulation , Drugs, Chinese Herbal/metabolism , Female , Femur , Fermentation , Humans , Lactobacillus/metabolism , Macrophages/drug effects , Mice , NFATC Transcription Factors/metabolism , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , RANK Ligand/metabolism , Rats , Rats, Sprague-Dawley
13.
Molecules ; 18(10): 12548-60, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24152674

ABSTRACT

In this study, the effect of low-molecular weight white ginseng compounds on various biochemical indices, including blood lipid concentrations and antioxidant enzyme activities and morphological changes was investigated in rabbits with high cholesterol diet-induced hypercholesterolemia. The experimental animals were 16-week-old male New Zealand white rabbits divided into normal control diet, high cholesterol diet, and high cholesterol with 0.05% white ginseng low-molecule compound groups, treated for 4 weeks. Blood lipid concentrations were higher in the high cholesterol groups compared to the normal control group but were not improved by the white ginseng low-molecular weight compound. We note however that antioxidant enzyme activities and morphological changes of the aorta showed that white ginseng small compounds had a positive effect on hypercholesterolemia. Based on such results, low-molecular weight compounds rich in phenolic compounds in white ginseng can be said to be effective in part in improving hyperlipidemia and atherosclerosis induced by a high cholesterol diet among New Zealand white rabbits.


Subject(s)
Anticholesteremic Agents/pharmacology , Antioxidants/pharmacology , Atherosclerosis/drug therapy , Cholesterol, Dietary/administration & dosage , Hypercholesterolemia/drug therapy , Panax/chemistry , Plant Extracts/pharmacology , Animals , Anticholesteremic Agents/isolation & purification , Anticholesteremic Agents/therapeutic use , Antioxidants/isolation & purification , Antioxidants/therapeutic use , Aorta/drug effects , Aorta/pathology , Atherosclerosis/etiology , Atherosclerosis/pathology , Catalase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Hypercholesterolemia/blood , Hypercholesterolemia/etiology , Lipid Peroxidation/drug effects , Lipids/blood , Liver/drug effects , Liver/enzymology , Male , Phenols/isolation & purification , Phenols/pharmacology , Phenols/therapeutic use , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Rabbits , Superoxide Dismutase/metabolism
14.
Article in English | MEDLINE | ID: mdl-23082080

ABSTRACT

Hwangryun-haedok-tang (HRT) is the common recipe in traditional Asian medicine, and microbial fermentation is used for the conventional methods for processing traditional medicine. We investigated the inhibitory effect of the n-butanol fraction of HRT (HRT-BU) and fHRT (fHRT-BU) on the RANKL-induced osteoclastogenesis in bone-marrow-derived macrophages. mRNA expression of osteoclastogenesis-related genes were evaluated by real-time QPCR. The activation of signaling pathways was determined by western blot analysis. The marker compounds of HRT-BU and fHRT-BU were analyzed by HPLC. The inhibitory effect of HRT or fHRT on ovariectomy-induced bone loss were evaluated using OVX rats with orally administered HRT, fHRT (300, 1000 mg/kg), or its vehicle for 12 weeks. fHRT-BU significantly inhibited RANKL-induced osteoclastogenesis, and phosphorylation of p38, IKKα/ß, and NF-κBp65 compared to HRT-BU. In addition, fHRT-BU also significantly inhibited the mRNA expression of Nfκb2, TNF-α, NFATc1, TRAP, ATPv0d2, and cathepsin K. Furthermore, administration of fHRT had a greater effect on the increase of BMD, and greater improved bone microstructure of the femora than that of HRT in ovariectomy rats. This study demonstrated that bacterial fermentation enhances the inhibitory effect of HRT on osteoclastogenesis and bone loss. These results suggest that fermented HRT might have the beneficial effects on bone disease by inhibiting osteoclastogenesis.

15.
Article in English | MEDLINE | ID: mdl-22454683

ABSTRACT

This study was conducted to determine if oral administration of the novel herbal medicine, KIOM-MA, and its Lactobacillus acidophilus-fermented product, KIOM-MA128, has therapeutic properties for the treatment of atopic dermatitis (AD). Using AD-induced BALB/c mice by Ovalbumin and aluminum hydroxide, the effectiveness of KIOM-MA and KIOM-MA128 on AD was evaluated. Oral administration of KIOM-MA and KIOM-MA128 reduced major clinical signs of AD including erythema/darkening, edema/papulation, excoriations, lichenification/prurigo, and dryness. Interestingly, KIOM-MA128 more significantly improved AD-related symptoms including decrease of IgE level in the plasma as well as reduction of scratching behavior, skin severity in the AD BALB/c model. HPLC analysis showed the significant changes in the constituent patterns between KIOM-MA and KIOM-MA128. Our results suggest that both KIOM-MA and KIOM-MA128 have potential for therapeutic reagent for the treatment of AD, and further, the efficacy is significantly enhanced by L. acidophilus fermentation via increases in its indicator molecule.

16.
Foods ; 11(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35741909

ABSTRACT

Ginsenoside Rf (G-Rf) is a saponin of the protopanaxatriol family and a bioactive component of Korean ginseng. Several ginsenosides are known to have a positive effect on exercise endurance, but there is not yet a report on that of G-Rf. Forced swimming tests were performed on G-Rf-treated mice to evaluate the effect of G-Rf on exercise endurance. Subsequently, the expression of markers related to myoblast differentiation and mitochondrial biogenesis in murine skeletal C2C12 myotubes and tibialis anterior muscle tissue was determined using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining to elucidate the mechanism of action of G-Rf. The swimming duration of the experimental animal was increased by oral gavage administration of G-Rf. Moreover, G-Rf significantly upregulated the myoblast differentiation markers, mitochondrial biogenesis markers, and its upstream regulators. In particular, the mitochondrial biogenesis marker increased by G-Rf was decreased by each inhibitor of the upstream regulators. G-Rf enhances exercise endurance in mice, which may be mediated by myoblast differentiation and enhanced mitochondrial biogenesis through AMPK and p38 MAPK signaling pathways, suggesting that it increases energy production to satisfy additional needs of exercising muscle cells. Therefore, G-Rf is an active ingredient in Korean ginseng responsible for improving exercise performance.

17.
Biochem Biophys Res Commun ; 413(4): 637-42, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21945440

ABSTRACT

Isoliquiritigenin (ILTG) is a chalcone compound and has valuable pharmacological properties such as antioxidant, anti-inflammatory, anticancer, and antiallergic activities. Recently, the anxiolytic effect of ILTG has been reported; however, its action mechanism and hypnotic activity have not yet been demonstrated. Therefore, we investigated the hypnotic effect and action mechanism of ILTG. ILTG significantly potentiated the pentobarbital-induced sleep in mice at doses of 25 and 50mg/kg. The hypnotic activity of ILTG was fully inhibited by flumazenil (FLU), a specific gamma-aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptor antagonist. The binding affinity of ILTG was 0.453 µM and was found to be higher than that of the reference compound, diazepam (DZP, 0.012 µM). ILTG (10(-5)M) potentiated GABA-evoked currents to 151% of the control level on isolated dorsal raphe neurons. ILTG has 65 times higher affinity for GABA(A)-BZD receptors than DZP, and the dissociation constant for ILTG was 4.0 × 10(-10)M. The effect of ILTG on GABA currents was blocked by 10(-7)M FLU and ZK-93426. These results suggest that ILTG produces hypnotic effects by positive allosteric modulation of GABA(A)-BZD receptors.


Subject(s)
Chalcones/pharmacology , GABA Modulators/pharmacology , Hypnotics and Sedatives/pharmacology , Receptors, GABA-A/metabolism , Allosteric Regulation , Animals , Benzodiazepines/pharmacology , Cells, Cultured , Chalcones/chemistry , Hypnotics and Sedatives/chemistry , Mice , Neurons/drug effects , Phenobarbital/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/chemistry
18.
Int J Biol Macromol ; 178: 363-372, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33652052

ABSTRACT

We previously reported that an exopolysaccharide-enriched fraction from Bacillus subtilis J92 (B-EPS) could improve immune functions by regulating the immunological parameters of IFN-γ-primed macrophages, CD3/CD28-stimulated splenocytes, and in cyclophosphamide-induced immunosuppressed mice. In the present study, we investigated whether B-EPS contributes to the maintenance of intestinal barrier integrity in a dextran sodium sulfate (DSS)-induced colitis mouse model that mimics human inflammatory bowel disease (IBD). B-EPS treatment improved histological characteristics and common features including a high disease activity index (DAI), an increased spleen weight, and colon shortening in DSS-induced colitis. B-EPS also effectively restored intestinal barrier function by modulating tight junction-related proteins (claudin-1, claudin-2, and occludin) and epithelial-mesenchymal transition (EMT) marker proteins (E-cadherin, N-cadherin, and vimentin). Moreover, B-EPS downregulated immune cell infiltration and inflammatory responses including the production of inflammatory cytokines, such as IL-6 and IL-1ß, and activation of nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Taken together, these results suggest that B-EPS could serve as a functional food ingredient for improving intestinal barrier function and alleviating colonic inflammation in IBD.


Subject(s)
Bacillus subtilis/chemistry , Colitis , Dextran Sulfate/toxicity , Intestinal Mucosa , Polysaccharides, Bacterial , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred ICR , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology
19.
Foods ; 10(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34945585

ABSTRACT

We previously reported that the immunostimulatory activity of heat-killed Latilactobacillus sakei K040706 in macrophages and cyclophosphamide (CTX)-treated mice. However, identification of heat-killed L. sakei K040706 (heat-killed LS06) using a validated method is not yet reported. Further, the underlying molecular mechanisms for its immunostimulatory effects in CTX-induced immunosuppressed mice remain unknown. In this study, we developed strain-specific genetic markers to detect heat-killed L. sakei LS06. The lower detection limit of the validated primer set was 2.1 × 105 colony forming units (CFU)/mL for the heat-killed LS06 assay. Moreover, oral administration of heat-killed LS06 (108 or 109 CFU/day, p.o.) effectively improved the body loss, thymus index, natural killer cell activity, granzyme B production, and T and B cell proliferation in CTX-treated mice. In addition, heat-killed LS06 enhanced CTX-reduced immune-related cytokine (interferon-γ, interleukin (IL)-2, and IL-12) production and mRNA expression. Heat-killed LS06 also recovered CTX-altered microbiota composition, including the phylum levels of Bacteroidetes, Firmicutes, and Proteobacteria and the family levels of Muribaculaceae, Prevotellaceae, Tannerellaceae, Christensenellaceae, Gracilibacteraceae, and Hungateiclostridiaceae. In conclusion, since heat-killed L. sakei K040706 ameliorated CTX-induced immunosuppression and modulated gut microbiota composition, they have the potential to be used in functional foods for immune regulation.

20.
Int J Mol Sci ; 11(1): 67-78, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20162002

ABSTRACT

Dandelion (Taraxacum officinale), an oriental herbal medicine, has been shown to favorably affect choleretic, antirheumatic and diuretin properties. Recent reports have indicated that excessive oxidative stress contributes to the development of atherosclerosis-linked metabolic syndrome. The objective of this current study was to investigate the possible hypolipidemic and antioxidative effects of dandelion root and leaf in rabbits fed with a high-cholesterol diet. A group of twenty eight male rabbits was divided into four subgroups; a normal diet group, a high-cholesterol diet group, a high-cholesterol diet with 1% (w/w) dandelion leaf group, and a high-cholesterol diet with 1% (w/w) dandelion root group. After the treatment period, the plasma antioxidant enzymes and lipid profiles were determined. Our results show that treatment with dandelion root and leaf positively changed plasma antioxidant enzyme activities and lipid profiles in cholesterol-fed rabbits, and thus may have potential hypolipidemic and antioxidant effects. Dandelion root and leaf could protect against oxidative stress linked atherosclerosis and decrease the atherogenic index.


Subject(s)
Antioxidants/pharmacology , Hypolipidemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Taraxacum/chemistry , Administration, Oral , Animals , Antioxidants/administration & dosage , Aorta/drug effects , Aorta/pathology , Body Weight/drug effects , Diet , Hypolipidemic Agents/administration & dosage , Lipid Peroxidation/drug effects , Lipids/blood , Liver/anatomy & histology , Liver/drug effects , Liver/metabolism , Male , Organ Size , Plant Extracts/administration & dosage , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL