Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell ; 181(7): 1533-1546.e13, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32631492

ABSTRACT

The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.


Subject(s)
Cholera/metabolism , Disease Susceptibility/microbiology , Gastrointestinal Microbiome/physiology , Adult , Animals , Bile Acids and Salts , Cholera/microbiology , Disease Models, Animal , Fecal Microbiota Transplantation/methods , Female , Host-Pathogen Interactions/physiology , Humans , Hydrolases/analysis , Male , Mice , Mice, Inbred C57BL , Microbiota , Taurocholic Acid/metabolism , Vibrio cholerae/pathogenicity , Vibrio cholerae/physiology , Virulence
2.
Development ; 151(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345254

ABSTRACT

EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.


Subject(s)
Axon Guidance , Endothelial Cells , Animals , Mice , Axons/physiology , GABAergic Neurons , Mice, Knockout , Receptor Protein-Tyrosine Kinases , Receptor, EphB1/metabolism
3.
Biol Psychiatry Glob Open Sci ; 4(2): 100289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38390348

ABSTRACT

Background: Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods: We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results: Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions: MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.

4.
Front Neural Circuits ; 17: 1214959, 2023.
Article in English | MEDLINE | ID: mdl-37736398

ABSTRACT

Background: Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods: We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results: Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion: MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.


Subject(s)
Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Brain , Anxiety , Magnetic Resonance Imaging
5.
Elife ; 122023 02 13.
Article in English | MEDLINE | ID: mdl-36780219

ABSTRACT

Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.


Subject(s)
Anhedonia , Basic Helix-Loop-Helix Transcription Factors , Social Defeat , Animals , Humans , Mice , Anhedonia/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Depression , Mice, Inbred C57BL , Prefrontal Cortex/physiology , Social Behavior , Stress, Psychological/psychology , Synapses/metabolism
6.
Front Cell Infect Microbiol ; 12: 861677, 2022.
Article in English | MEDLINE | ID: mdl-35573801

ABSTRACT

The commensal microbes of the gut microbiota make important contributions to host defense against gastrointestinal pathogens, including Vibrio cholerae, the etiologic agent of cholera. As interindividual microbiota variation drives individual differences in infection susceptibility, we examined both host and V. cholerae gene expression during infection of suckling mice transplanted with different model human commensal communities, including an infection-susceptible configuration representing communities damaged by recurrent diarrhea and malnutrition in cholera endemic areas and a representative infection-resistant microbiota characteristic of healthy individuals. In comparison to colonization of animals with resistant microbiota, animals bearing susceptible microbiota challenged with V. cholerae downregulate genes associated with generation of reactive oxygen/nitrogen stress, while V. cholerae in these animals upregulates biofilm-associated genes. We show that V. cholerae in susceptible microbe infection contexts are more resistant to oxidative stress and inhibitory bile metabolites generated by the action of commensal microbes and that both phenotypes are dependent on biofilm-associated genes, including vpsL. We also show that susceptible and infection-resistant microbes drive different bile acid compositions in vivo by the action of bile salt hydrolase enzymes. Taken together, these findings provide a better understanding of how the microbiota uses multiple mechanisms to modulate the infection-associated host environment encountered by V. cholerae, leading to commensal-dependent differences in infection susceptibility.


Subject(s)
Cholera , Microbiota , Vibrio cholerae , Animals , Biofilms , Disease Susceptibility , Gene Expression Regulation, Bacterial , Intestines , Mice , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
7.
Gut Microbes ; 13(1): 1937015, 2021.
Article in English | MEDLINE | ID: mdl-34180341

ABSTRACT

The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.


Subject(s)
Cholera/microbiology , Gastrointestinal Microbiome , Vibrio cholerae/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Vibrio cholerae/genetics
8.
Neuropsychopharmacology ; 46(11): 2021-2029, 2021 10.
Article in English | MEDLINE | ID: mdl-33649502

ABSTRACT

Autism spectrum disorder (ASD) is characterized by impairments in social communication and interaction and restricted, repetitive behaviors. It is frequently associated with comorbidities, such as attention-deficit hyperactivity disorder, altered sensory sensitivity, and intellectual disability. A de novo nonsense mutation in EPHB2 (Q857X) was discovered in a female patient with ASD [13], revealing EPHB2 as a candidate ASD risk gene. EPHB2 is a receptor tyrosine kinase implicated in axon guidance, synaptogenesis, and synaptic plasticity, positioning it as a plausible contributor to the pathophysiology of ASD and related disorders. In this study, we show that the Q857X mutation produced a truncated protein lacking forward signaling and that global disruption of one EphB2 allele (EphB2+/-) in mice produced several behavioral phenotypes reminiscent of ASD and common associated symptoms. EphB2+/- female, but not male, mice displayed increased repetitive behavior, motor hyperactivity, and learning and memory deficits, revealing sex-specific effects of EPHB2 hypofunction. Moreover, we observed a significant increase in the intrinsic excitability, but not excitatory/inhibitory ratio, of motor cortex layer V pyramidal neurons in EphB2+/- female, but not male, mice, suggesting a possible mechanism by which EPHB2 hypofunction may contribute to sex-specific motor-related phenotypes. Together, our findings suggest that EPHB2 hypofunction, particularly in females, is sufficient to produce ASD-associated behaviors and altered cortical functions in mice.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Receptor, EphB2/genetics , Sex Factors , Animals , Brain , Female , Male , Mice , Mice, Knockout , Neuronal Plasticity
9.
Biol Psychiatry ; 88(6): 488-499, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32418612

ABSTRACT

BACKGROUND: Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development. METHODS: Multiple biochemical, molecular, electrophysiological, behavioral, and transgenic mouse approaches were used to characterize MCHS-relevant synaptic, behavioral, and gene expression changes in mouse models of MCHS. RESULTS: We showed that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding-deficient global Mef2c heterozygous mice (Mef2c-Het) displayed numerous MCHS-related behaviors, including autism-related behaviors, changes in cortical gene expression, and deficits in cortical excitatory synaptic transmission. We detected hundreds of dysregulated genes in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observed an enrichment of upregulated microglial genes, but this was not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduced a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduced social deficits and repetitive behavior. CONCLUSIONS: Taken together, our findings show that mutations found in individuals with MCHS disrupt the DNA-binding function of MEF2C, and DNA binding-deficient Mef2c global heterozygous mice display numerous MCHS-related phenotypes, including excitatory neuron and microglia gene expression changes. Our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.


Subject(s)
Haploinsufficiency , Neurons , Animals , Disease Models, Animal , MEF2 Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Synaptic Transmission
10.
Elife ; 82019 01 22.
Article in English | MEDLINE | ID: mdl-30667358

ABSTRACT

The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine (DA) neurons, has been hypothesized to be broadly activated by aversive stimuli. However, this encoding pattern has only been demonstrated for a limited number of stimuli, and the RMTg influence on ventral tegmental (VTA) responses to aversive stimuli is untested. Here, we found that RMTg neurons are broadly excited by aversive stimuli of different sensory modalities and inhibited by reward-related stimuli. These stimuli include visual, auditory, somatosensory and chemical aversive stimuli, as well as "opponent" motivational states induced by removal of sustained rewarding or aversive stimuli. These patterns are consistent with broad encoding of negative valence in a subset of RMTg neurons. We further found that valence-encoding RMTg neurons preferentially project to the DA-rich VTA versus other targets, and excitotoxic RMTg lesions greatly reduce aversive stimulus-induced inhibitions in VTA neurons, particularly putative DA neurons, while also impairing conditioned place aversion to multiple aversive stimuli. Together, our findings indicate a broad RMTg role in encoding aversion and driving VTA responses and behavior.


Subject(s)
Action Potentials/physiology , Dopaminergic Neurons/physiology , Mesencephalon/physiology , Neural Pathways/physiology , Ventral Tegmental Area/physiology , Animals , Conditioning, Operant/physiology , Dopamine/metabolism , Male , Mesencephalon/cytology , Rats, Sprague-Dawley , Reward , Ventral Tegmental Area/cytology , gamma-Aminobutyric Acid/metabolism
11.
Elife ; 62017 01 26.
Article in English | MEDLINE | ID: mdl-28124973

ABSTRACT

Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Myelin Sheath/metabolism , Phosphoproteins/metabolism , Schwann Cells/physiology , Transcription Factors/metabolism , Acyltransferases , Animals , Cell Cycle Proteins , Cell Differentiation , Cell Proliferation , Mice , YAP-Signaling Proteins
12.
Cell Rep ; 12(6): 965-78, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26235615

ABSTRACT

Tuberous sclerosis complex (TSC) is associated with neurodevelopmental abnormalities, including defects in neuronal migration. However, the alterations in cell signaling mechanisms critical for migration and final positioning of neurons in TSC remain unclear. Our detailed cellular analyses reveal that reduced Tsc2 in newborn neurons causes abnormalities in leading processes of migrating neurons, accompanied by significantly delayed migration. Importantly, we demonstrate that Reelin-Dab1 signaling is aberrantly regulated in TSC mouse models and in cortical tubers from TSC patients owing to enhanced expression of the E3 ubiquitin ligase Cul5, a known mediator of pDab1 ubiquitination. Likewise, mTORC1 activation by Rheb overexpression generates similar neuronal and Reelin-Dab1 signaling defects, and directly upregulates Cul5 expression. Inhibition of mTORC1 by rapamycin treatment or by reducing Cul5 largely restores normal leading processes and positioning of migrating neurons. Thus, disrupted Reelin-Dab1 signaling is critically involved in the neuronal migration defects of TSC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Serine Endopeptidases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Movement/genetics , Cell Movement/physiology , Cullin Proteins/genetics , Cullin Proteins/metabolism , Extracellular Matrix Proteins/genetics , Female , Humans , Immunohistochemistry , Immunoprecipitation , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Models, Biological , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Neurogenesis/physiology , Reelin Protein , Reverse Transcriptase Polymerase Chain Reaction , Serine Endopeptidases/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
13.
Arch Biochem Biophys ; 417(1): 65-76, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12921781

ABSTRACT

The redox chemistry of models of N-hydroxy-L-arginine, the biosynthetic intermediate in the synthesis of NO by the family of nitric oxide synthase enzymes, has been explored experimentally and theoretically. The oxidation of N-hydroxyguanidine model compounds by Cu(II) was studied as a means of establishing possible metabolic fates and intermediates of this important functional group. These studies indicate than an iminoxyl intermediate is formed and may be an important biological species generated from N-hydroxyguanidines including N-hydroxy-L-arginine.


Subject(s)
Arginine/analogs & derivatives , Arginine/metabolism , Copper/metabolism , Guanidines/metabolism , Hydroxyl Radical/chemistry , Nitric Oxide/biosynthesis , Guanidines/chemical synthesis , Kinetics , Models, Chemical , Nitric Oxide/analysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL