Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 50(15): 8658-8673, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35699208

ABSTRACT

Alternative pre-mRNA splicing is key to proteome diversity; however, the biological roles of alternative splicing (AS) in signaling pathways remain elusive. Here, we focus on TEA domain transcription factor 1 (TEAD1), a YAP binding factor in the Hippo signaling pathway. Public database analyses showed that expression of YAP-TEAD target genes negatively correlated with the expression of a TEAD1 isoform lacking exon 6 (TEAD1ΔE6) but did not correlate with overall TEAD1 expression. We confirmed that the transcriptional activity and oncogenic properties of the full-length TEAD1 isoform were greater than those of TEAD1ΔE6, with the difference in transcription related to YAP interaction. Furthermore, we showed that RNA-binding Fox-1 homolog 2 (RBFOX2) promoted the inclusion of TEAD1 exon 6 via binding to the conserved GCAUG element in the downstream intron. These results suggest a regulatory mechanism of RBFOX2-mediated TEAD1 AS and provide insight into AS-specific modulation of signaling pathways.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Alternative Splicing , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34663733

ABSTRACT

We demonstrate how programmable shape evolution and deformation can be induced in plant-based natural materials through standard digital printing technologies. With nonallergenic pollen paper as the substrate material, we show how specific geometrical features and architectures can be custom designed through digital printing of patterns to modulate hygrophobicity, geometry, and complex shapes. These autonomously hygromorphing configurations can be "frozen" by postprocessing coatings to meet the needs of a wide spectrum of uses and applications. Through computational simulations involving the finite element method and accompanying experiments, we develop quantitative insights and a general framework for creating complex shapes in eco-friendly natural materials with potential sustainable applications for scalable manufacturing.


Subject(s)
Paper , Technology , Computer Simulation
3.
Cancer Cell Int ; 23(1): 249, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875914

ABSTRACT

Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.

4.
Langmuir ; 39(1): 1-11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36576966

ABSTRACT

Membrane-enveloped viruses are responsible for most viral pandemics in history, and more effort is needed to advance broadly applicable countermeasures to mitigate the impact of future outbreaks. In this Perspective, we discuss how biosensing techniques associated with lipid model membrane platforms are contributing to improving our mechanistic knowledge of membrane fusion and destabilization that is closely linked to viral entry as well as vaccine and antiviral drug development. A key benefit of these platforms is the simplicity of interpreting the results which can be complemented by other techniques to decipher more complicated biological observations and evaluate the biophysical functionalities that can be correlated to biological activities. Then, we introduce exciting application examples of membrane-targeting antivirals that have been refined over time and will continue to improve based on biophysical insights. Two ways to abrogate the function of viral membranes are introduced here: (1) selective disruption of the viral membrane structure and (2) alteration of the membrane component. While both methods are suitable for broadly useful antivirals, the latter also has the potential to produce an inactivated vaccine. Collectively, we emphasize how biosensing tools based on membrane interfacial science can provide valuable information that could be translated into biomedicines and improve their selectivity and performance.


Subject(s)
Antiviral Agents , Virus Internalization , Antiviral Agents/pharmacology , Membranes/chemistry , Vaccine Development , Lipids/analysis
5.
Langmuir ; 39(23): 8297-8305, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37267480

ABSTRACT

Multivalent ligand-receptor interactions between receptor-presenting lipid membranes and ligand-modified biological and biomimetic nanoparticles influence cellular entry and fusion processes. Environmental pH changes can drive these membrane-related interactions by affecting membrane nanomechanical properties. Quantitatively, however, the corresponding effects on high-curvature, sub-100 nm lipid vesicles are scarcely understood, especially in the multivalent binding context. Herein, we employed the label-free localized surface plasmon resonance (LSPR) sensing technique to track the multivalent attachment kinetics, shape deformation, and surface coverage of biotin ligand-functionalized, zwitterionic lipid vesicles with different ligand densities on a streptavidin receptor-coated supported lipid bilayer under varying pH conditions (4.5, 6, 7.5). Our results demonstrate that more extensive multivalent interactions caused greater vesicle shape deformation across the tested pH conditions, which affected vesicle surface packing as well. Notably, there were also pH-specific differences, i.e., a higher degree of vesicle shape deformation was triggered at a lower multivalent binding energy in pH 4.5 than in pH 6 and 7.5 conditions. These findings support that the nanomechanical properties of high-curvature lipid membranes, especially the membrane bending energy and the corresponding responsiveness to multivalent binding interactions, are sensitive to solution pH, and indicate that multivalency-induced vesicle shape deformation occurs slightly more readily in acidic pH conditions relevant to biological environments.


Subject(s)
Lipid Bilayers , Nanoparticles , Ligands , Lipid Bilayers/chemistry , Surface Plasmon Resonance/methods , Hydrogen-Ion Concentration
6.
Proc Natl Acad Sci U S A ; 117(16): 8711-8718, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32253309

ABSTRACT

Here we describe the development of a humidity-responsive sheet of paper that is derived solely from natural pollen. Adaptive soft material components of the paper exhibit diverse and well-integrated responses to humidity that promote shape reconfiguration, actuation, and locomotion. This mechanically versatile and nonallergenic paper can generate a cyclically high contractile stress upon water absorption and desorption, and the rapid exchange of water drives locomotion due to hydrodynamic effects. Such dynamic behavior can be finely tuned by adjusting the structure and properties of the paper, including thickness, surface roughness, and processing conditions, analogous to those of classical soapmaking. We demonstrate that humidity-responsive paper-like actuators can mimic the blooming of the Michelia flower and perform self-propelled motion. Harnessing the material properties of bioinspired systems such as pollen paper opens the door to a wide range of sustainable, eco-friendly, and biocompatible material innovation platforms for applications in sensing, actuation, and locomotion.

7.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298587

ABSTRACT

Antimicrobial fatty acids derived from natural sources and renewable feedstocks are promising surface-active substances with a wide range of applications. Their ability to target bacterial membrane in multiple mechanisms offers a promising antimicrobial approach for combating bacterial infections and preventing the development of drug-resistant strains, and it provides a sustainable strategy that aligns with growing environmental awareness compared to their synthetic counterparts. However, the interaction and destabilization of bacterial cell membranes by these amphiphilic compounds are not yet fully understood. Here, we investigated the concentration-dependent and time-dependent membrane interaction between long-chain unsaturated fatty acids-linolenic acid (LNA, C18:3), linoleic (LLA, C18:2), and oleic acid (OA, C18:1)-and the supported lipid bilayers (SLBs) using quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy. We first determined the critical micelle concentration (CMC) of each compound using a fluorescence spectrophotometer and monitored the membrane interaction in real time following fatty acid treatment, whereby all micellar fatty acids elicited membrane-active behavior primarily above their respective CMC values. Specifically, LNA and LLA, which have higher degrees of unsaturation and CMC values of 160 µM and 60 µM, respectively, caused significant changes in the membrane with net |Δf| shifts of 23.2 ± 0.8 Hz and 21.4 ± 0.6 Hz and ΔD shifts of 5.2 ± 0.5 × 10-6 and 7.4 ± 0.5 × 10-6. On the other hand, OA, with the lowest unsaturation degree and CMC value of 20 µM, produced relatively less membrane change with a net |Δf| shift of 14.6 ± 2.2 Hz and ΔD shift of 8.8 ± 0.2 × 10-6. Both LNA and LLA required higher concentrations than OA to initiate membrane remodeling as their CMC values increased with the degree of unsaturation. Upon incubating with fluorescence-labeled model membranes, the fatty acids induced tubular morphological changes at concentrations above CMC. Taken together, our findings highlight the critical role of self-aggregation properties and the degree of unsaturated bonds in unsaturated long-chain fatty acids upon modulating membrane destabilization, suggesting potential applications in developing sustainable and effective antimicrobial strategies.


Subject(s)
Anti-Infective Agents , Micelles , Fatty Acids , Lipid Bilayers/chemistry , Anti-Infective Agents/pharmacology , Oleic Acid
8.
Acc Chem Res ; 54(16): 3204-3214, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34346210

ABSTRACT

The rapid growth in the global human population has increased the prevalence of emerging infectious diseases, which poses a major risk to public health. In search of effective clinical solutions, the acquisition of knowledge and understanding of biomolecular processes associated with viral pathogens represents a prerequisite. In this context, biophysical engineering approaches are particularly promising since they can resolve biomolecular interactions systematically by circumventing the complexities associated with experiments involving natural biological systems. The engineering approaches encompass the design and construction of biomimetic platforms that simulate the physiological system. This approach enables us to characterize, measure, and quantitatively analyze biomolecular interactions.In this Account, we summarize biophysical measurements that our group has successfully adopted to develop broad-spectrum antiviral drugs based on the lipid envelope antiviral disruption (LEAD) strategy, targeting the structural integrity of the outer viral membrane to abrogate viral infectivity. We particularly focus on the engineering aspects related to the design and construction of the tethered lipid vesicle platform, which closely mimics the viral membrane. We first outline the development of the LEAD agents screening platform that integrates soft matter design components with biomaterials and surface functionalization strategies to facilitate parallel measurements tracking peptide-induced destabilization of nanoscale, virus-mimicking vesicles with tunable size and composition. Then, we describe how this platform can be effectively employed to gain insights into the membrane curvature dependency of certain peptides. The fundamental knowledge acquired through this systematic process is crucial in the identification and subsequent development of antiviral drug candidates. In particular, we highlight the development of curvature-sensitive α-helical (AH) peptides as a broad-spectrum antiviral agent that has been demonstrated as an effective therapeutic treatment against multiple enveloped viruses. Also, we introduce a tethered cluster of vesicles to mimic clusters of enveloped viruses, exhibiting higher infectivity levels in the biological system. Then, we discuss key considerations, including experimental artifacts, namely dye leakage and imaging-related photobleaching, and corresponding corrective measures to improve the accuracy of quantitative interpretation. With the ongoing development and application of the tethered lipid vesicle platform, there is a compelling opportunity to explore fundamental biointerfacial science and develop a new class of broad-spectrum antiviral agents to prepare for the future membrane-enveloped viral pandemics.


Subject(s)
Antiviral Agents/chemical synthesis , Biomimetics , Drug Development , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biophysical Phenomena , Viruses/chemistry , Viruses/drug effects
9.
Langmuir ; 38(51): 15950-15959, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36515977

ABSTRACT

Cholesterol plays a critical role in modulating the lipid membrane properties of biological and biomimetic systems and recent attention has focused on its role in the functions of sub-100 nm lipid vesicles and lipid nanoparticles. These functions often rely on multivalent ligand-receptor interactions involving membrane attachment and dynamic shape transformations while the extent to which cholesterol can influence such interaction processes is largely unknown. To address this question, herein, we investigated the attachment of sub-100 nm lipid vesicles containing varying cholesterol fractions (0-45 mol %) to membrane-mimicking supported lipid bilayer (SLB) platforms. Biotinylated lipids and streptavidin proteins were used as model ligands and receptors, respectively, while the localized surface plasmon resonance sensing technique was employed to track vesicle attachment kinetics in combination with analytical modeling of vesicle shape changes. Across various conditions mimicking low and high multivalency, our findings revealed that cholesterol-containing vesicles could bind to receptor-functionalized membranes but underwent appreciably less multivalency-induced shape deformation than vesicles without cholesterol, which can be explained by a cholesterol-mediated increase in membrane bending rigidity. Interestingly, the extent of vesicle deformation that occurred in response to increasingly strong multivalent interactions was less pronounced for vesicles with greater cholesterol fraction. The latter trend was rationalized by taking into account the strong dependence of the membrane bending energy on the area of the vesicle-SLB contact region and such insights can aid the engineering of membrane-enveloped nanoparticles with tailored biophysical properties.


Subject(s)
Lipid Bilayers , Surface Plasmon Resonance , Ligands , Cholesterol
10.
Ecotoxicol Environ Saf ; 229: 113094, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34942421

ABSTRACT

Polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, is known to cause lung toxicity, including inflammation and pulmonary fibrosis. In this study, we aimed to investigate the effect of PHMG-p on human lung tissue models (2D epithelial cells and 3D organoids) under conditions of oxidative stress and viral infection. The effect of PHMG-p was studied by evaluating the formation of stress granules (SGs), which play a pivotal role in cellular adaptation to various stress conditions. Under oxidative stress and respiratory syncytial virus (RSV) infection, exposure to PHMG-p remarkably increased eIF2α phosphorylation, which is essential for SG-related signalling, and significantly increased SG formation. Furthermore, PHMG-p induced fibrotic gene expression and caused cell death due to severe DNA damage, which was further increased under oxidative stress and RSV infection, indicating that PHMG-p induces severe lung toxicity under stress conditions. Taken together, toxicity evaluation under various stressful conditions is necessary to accurately predict potential lung toxicity of chemicals affecting the respiratory tract.


Subject(s)
Respiratory Syncytial Virus Infections , Stress Granules , Guanidines/toxicity , Humans , Lung , Organoids
11.
Chem Soc Rev ; 50(17): 9741-9765, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34259262

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.


Subject(s)
Antiviral Agents/chemistry , Coated Materials, Biocompatible , Drug Design , COVID-19 , Humans , Pandemics , SARS-CoV-2
12.
Langmuir ; 37(45): 13390-13398, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34724382

ABSTRACT

Many medically important viruses are enveloped viruses, which are surrounded by a structurally conserved, host-derived lipid membrane coating. Agents that target and disrupt this membrane coating could potentially function as broad-spectrum antiviral drugs. The amphipathic α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein is one such candidate and has been demonstrated to be able to selectively rupture lipid vesicles in the size range of viruses (<160 nm diameter). However, the mechanism underlying this membrane curvature selectivity remains elusive. In this study, we have performed molecular dynamics simulations to study the binding of the AH peptide to model membranes that are stretched to resemble the looser lipid headgroup packing present on highly curved outer membranes of nanoscale vesicles. We found that the AH peptide binds more favorably to membranes that are stretched. In addition, a tetrameric placement of peptides across the membrane induced stable pore formation in the stretched membrane. Thus, our results suggest that the AH peptide senses the high curvature of nanoscale vesicles via the enhanced exposure of lipid packing defects induced by membrane area strain.


Subject(s)
Antiviral Agents , Peptides , Adsorption , Lipid Bilayers , Lipids , Membranes
13.
Langmuir ; 37(15): 4562-4570, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33834785

ABSTRACT

The irreversible formation of cholesterol monohydrate crystals within biological membranes is the leading cause of various diseases, including atherosclerosis. Understanding the process of cholesterol crystallization is fundamentally important and could also lead to the development of improved therapeutic strategies. This has driven several studies investigating the effect of the environmental parameters on the induction of cholesterol crystallite growth and the structure of the cholesterol crystallites, while the kinetics and mechanistic aspects of the crystallite formation process within lipid membranes remain poorly understood. Herein, we fabricated cholesterol crystallites within a supported lipid bilayer (SLB) by adsorbing a cholesterol-rich bicellar mixture onto a glass and silica surface and investigated the real-time kinetics of cholesterol crystallite nucleation and growth using epifluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) monitoring. Microscopic imaging showed the evolution of the morphology of cholesterol crystallites from nanorod- and plate-shaped habits during the initial stage to mostly large, micron-sized three-dimensional (3D) plate-shaped crystallites in the end, which was likened to Ostwald ripening. QCM-D kinetics revealed unique signal responses during the later stage of the growth process, characterized by simultaneous positive frequency shifts, nonmonotonous energy dissipation shifts, and significant overtone dependence. Based on the optically observed changes in crystallite morphology, we discussed the physical background of these unique QCM-D signal responses and the mechanistic aspects of Ostwald ripening in this system. Together, our findings revealed mechanistic details of the cholesterol crystallite growth kinetics, which may be useful in biointerfacial sensing and bioanalytical applications.


Subject(s)
Lipid Bilayers , Quartz Crystal Microbalance Techniques , Cell Membrane , Cholesterol , Crystallization , Quartz
14.
Langmuir ; 37(3): 1306-1314, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33444030

ABSTRACT

Protein adsorption onto nanomaterial surfaces is important for various nanobiotechnology applications such as biosensors and drug delivery. Within this scope, there is growing interest to develop alumina- and silica-based nanomaterial vaccine adjuvants and an outstanding need to compare protein adsorption onto alumina- and silica-based nanomaterial surfaces. Herein, using alumina- and silica-coated arrays of silver nanodisks with plasmonic properties, we conducted localized surface plasmon resonance (LSPR) experiments to evaluate real-time adsorption of bovine serum albumin (BSA) protein onto alumina and silica surfaces. BSA monomers and oligomers were prepared in different water-ethanol mixtures and both adsorbing species consistently showed quicker adsorption kinetics and more extensive adsorption-related spreading on alumina surfaces as compared to on silica surfaces. We rationalized these experimental observations in terms of the electrostatic forces governing protein-surface interactions on the two nanomaterial surfaces and the results support that more rigidly attached BSA protein-based coatings can be formed on alumina-based nanomaterial surfaces. Collectively, the findings in this study provide fundamental insight into protein-surface interactions at nanomaterial interfaces and can help to guide the development of protein-based coatings for medical and biotechnology applications such as vaccines.


Subject(s)
Nanostructures , Silicon Dioxide , Adsorption , Aluminum Oxide , Animals , Cattle , Serum Albumin, Bovine , Surface Properties
15.
Nano Lett ; 20(3): 1747-1754, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32027140

ABSTRACT

Plasmonic nanostructures have a wide range of applications, including chemical and biological sensing. However, the development of techniques to fabricate submicrometer-sized plasmonic structures over large scales remains challenging. We demonstrate a high-throughput, cost-effective approach to fabricate Au nanoribbons via chemical lift-off lithography (CLL). Commercial HD-DVDs were used as large-area templates for CLL. Transparent glass slides were coated with Au/Ti films and functionalized with self-assembled alkanethiolate monolayers. Monolayers were patterned with lines via CLL. The lifted-off, exposed regions of underlying Au were selectively etched into large-area grating-like patterns (200 nm line width; 400 nm pitch; 60 nm height). After removal of the remaining monolayers, a thin In2O3 layer was deposited and the resulting gratings were used as plasmonic sensors. Distinct features in the extinction spectra varied in their responses to refractive index changes in the solution environment with a maximum bulk sensitivity of ∼510 nm/refractive index unit. Sensitivity to local refractive index changes in the near-field was also achieved, as evidenced by real-time tracking of lipid vesicle or protein adsorption. These findings show how CLL provides a simple and economical means to pattern large-area plasmonic nanostructures for applications in optoelectronics and sensing.


Subject(s)
Gold/chemistry , Indium/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Surface Plasmon Resonance
16.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575831

ABSTRACT

There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.


Subject(s)
Drug Carriers , Drug Delivery Systems , Fatty Acids/administration & dosage , Lipids/chemistry , Monoglycerides/administration & dosage , Nanoparticles/chemistry , Nanotechnology , Chemical Phenomena , Humans , Liposomes , Micelles , Nanocapsules/chemistry , Nanotechnology/methods
17.
J Am Chem Soc ; 142(52): 21872-21882, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33345541

ABSTRACT

Crystallization of membrane-embedded components within phospholipid bilayers represents a distinct class of phase transformation that occurs in structurally organized, molecularly crowded, and dimensionally constrained amphiphilic fluids. Using unstable supported lipid bilayers-transiently assembled via surface-mediated fusion and spreading of bicellar precursors containing supersaturating concentrations of cholesterol-we monitor here the morphological evolution and dynamics of cholesterol crystallization within the membrane media. We find that the three-dimensional (3D) crystallization of cholesterol from an unstable two-dimensional (2D) in-membrane state proceeds via well-defined sequence of intermediates, including filaments, rods, helices, and 2D rectangular plates, before transforming into three-dimensional quadrilateral crystals-characteristic triclinic habit of cholesterol monohydrate. Our observations thus demonstrate that these structurally distinct cholesterol polymorphs are related to one another, contrasting with the notion that they represent disparate crystal habits stabilized by differences in lipid environments. Moreover, these observations indicate that cholesterol crystallization within the membrane media follows nonclassical multistep crystallization governed by the heuristic "Ostwald's rule of stages", which predicts that the crystallization kinetics proceed down the free energy landscape in a multistage process where each successive phase transition incurs the smallest loss of free energy relative to its predecessor. Furthermore, we find that the well-known cholesterol extracting agent, ß-cyclodextrin, acts by catalytically tipping the equilibrium in favor of crystal growth adding cholesterol from the membrane phase to the crystal in a layer-by-layer manner. Taken together, our results provide a new description of in-membrane cholesterol crystallization and may pave for a screening tool for identifying molecular candidates that target cholesterol crystals.


Subject(s)
Cell Membrane/chemistry , Cholesterol/chemistry , Phospholipids/chemistry , Crystallization , Models, Molecular , Molecular Conformation , Water/chemistry
18.
Calcif Tissue Int ; 107(5): 489-498, 2020 11.
Article in English | MEDLINE | ID: mdl-32776213

ABSTRACT

Calcific tendinopathy (CT), developed due to calcium hydroxyapatite deposition in the rotator cuff tendon, mostly affects women in their 40 s and 50 s and causes severe shoulder pain. However, the molecular basis of its pathogenesis and appropriate treatment methods are largely unknown. In this study, we identified 202 differentially expressed genes (DEGs) between calcific and adjacent normal tendon tissues of rotator cuff using RNA sequencing-based transcriptome analysis. The DEGs were highly enriched in extracellular matrix (ECM) degradation and inflammation-related processes. Further, matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 13 (MMP13), two of the enzymes associated with ECM degradation, were found to be highly upregulated 25.85- and 19.40-fold, respectively, in the calcific tendon tissues compared to the adjacent normal tendon tissues. Histopathological analyses indicated collagen degradation and macrophage infiltration at the sites of calcific deposit in the rotator cuff tendon. Our study acts as a foundation that may help in better understanding of the pathogenesis associated with CT, and thus in better management of the disease.


Subject(s)
Calcinosis/genetics , Extracellular Matrix/pathology , Rotator Cuff/pathology , Sequence Analysis, RNA , Tendinopathy/genetics , Female , Humans
19.
Langmuir ; 36(6): 1387-1400, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31990559

ABSTRACT

Supported lipid bilayers (SLBs) are cell-membrane-mimicking platforms that can be formed on solid surfaces and integrated with a wide range of surface-sensitive measurement techniques. SLBs are useful for unravelling details of fundamental membrane biology and biophysics as well as for various medical, biotechnology, and environmental science applications. Thus, there is high interest in developing simple and robust methods to fabricate SLBs. Currently, vesicle fusion is a popular method to form SLBs and involves the adsorption and spontaneous rupture of lipid vesicles on a solid surface. However, successful vesicle fusion depends on high-quality vesicle preparation, and it typically works with a narrow range of material supports and lipid compositions. In this Feature Article, we summarize current progress in developing two new SLB fabrication techniques termed the solvent-assisted lipid bilayer (SALB) and bicelle methods, which have compelling advantages such as simple sample preparation and compatibility with a wide range of material supports and lipid compositions. The molecular self-assembly principles underpinning the two strategies and important experimental parameters are critically discussed, and recent application examples are presented. Looking forward, we envision that these emerging SLB fabrication strategies can be widely adopted by specialists and nonspecialists alike, paving the way to enriching our understanding of lipid membrane properties and realizing new application possibilities.

20.
Langmuir ; 36(35): 10606-10614, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32787011

ABSTRACT

Natural proteins such as bovine serum albumin (BSA) are readily extracted from biological fluids and widely used in various applications such as drug delivery and surface coatings. It is standard practice to dope BSA proteins with an amphipathic stabilizer, most commonly fatty acids, during purification steps to maintain BSA conformational properties. There have been extensive studies investigating how fatty acids and related amphiphiles affect solution-phase BSA conformational properties, while it is far less understood how amphipathic stabilizers might influence noncovalent BSA adsorption onto solid supports, which is practically relevant to form surface coatings. Herein, we systematically investigated the binding interactions between BSA proteins and different molar ratios of caprylic acid (CA), monocaprylin (MC), and methyl caprylate (ME) amphiphiles-all of which have 8-carbon-long, saturated hydrocarbon chains with distinct headgroups-and resulting effects on BSA adsorption behavior on silica surfaces. Our findings revealed that anionic CA had the greatest binding affinity to BSA, which translated into greater solution-phase conformational stability and reduced adsorption-related conformational changes along with relatively low packing densities in fabricated BSA adlayers. On the other hand, nonionic MC had moderate binding affinity to BSA and could stabilize BSA conformational properties in the solution and adsorbed states while also enabling BSA adlayers to form with higher packing densities. We discuss physicochemical factors that contribute to these performance differences, and our findings demonstrate how rational selection of amphiphile type and amount can enable control over BSA adlayer properties, which could lead to improved BSA protein-based surface coatings.


Subject(s)
Serum Albumin, Bovine , Silicon Dioxide , Adsorption , Protein Conformation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL