Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Pediatr ; 215: 158-163.e6, 2019 12.
Article in English | MEDLINE | ID: mdl-31587863

ABSTRACT

OBJECTIVE: To examine the symptomatology and treatment of Sturge-Weber syndrome (SWS) from a large patient registry to identify common symptoms, clinical outcomes, and areas of unmet clinical need. STUDY DESIGN: An online patient questionnaire was completed by 628 patients with clinically diagnosed SWS and/or a port-wine birthmark over a 19-year period. Statistical analysis focused on seizures as a primary outcome measure, as well as associated neurologic, ophthalmologic, and dermatologic attributes to understand some of the natural history of the disorder. RESULTS: The majority (92%) of patients had a port-wine birthmark, and 60% of the patients had neurologic symptoms, including seizures and stroke-like episodes. Glaucoma was present in 48% of the patients. Other common symptoms included behavioral (46%) and hearing (or vestibular) disorders (24%). Delayed diagnosis of SWS beyond 1 year after presentation of initial symptoms occurred in 16% of the patients, with 68% having clear preexisting comorbidities, especially headaches. Birthmarks on the forehead and scalp were associated with seizures (P < .001), whereas bilaterality of birthmarks was not. Only 49% of patients being treated for epilepsy were free of seizures. CONCLUSIONS: Seizures and glaucoma were the primary drivers for a diagnosis of SWS in patients with delayed diagnosis, and hearing (or vestibular) and behavioral problems were also prevalent. The diagnosis of SWS was delayed when the predominant symptom was headache. Seizure control was quite poor in many patients with SWS. Our findings highlight an important need for detailed, longitudinal data to improve our understanding of SWS and develop better treatment strategies for patients with this disorder.


Subject(s)
Delayed Diagnosis , Disease Management , Registries , Seizures/etiology , Sturge-Weber Syndrome/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Forecasting , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Retrospective Studies , Seizures/therapy , Sturge-Weber Syndrome/complications , Sturge-Weber Syndrome/diagnosis , Surveys and Questionnaires , United States/epidemiology , Young Adult
2.
Breast Cancer Res ; 20(1): 145, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30486871

ABSTRACT

BACKGROUND: A combination of entinostat, all-trans retinoic acid, and doxorubicin (EAD) induces cell death and differentiation and causes significant regression of xenografts of triple-negative breast cancer (TNBC). METHODS: We investigated the mechanisms underlying the antitumor effects of each component of the EAD combination therapy by high-throughput gene expression profiling of drug-treated cells. RESULTS: Microarray analysis showed that entinostat and doxorubicin (ED) altered expression of genes related to growth arrest, inflammation, and differentiation. ED downregulated MYC, E2F, and G2M cell cycle genes. Accordingly, entinostat sensitized the cells to doxorubicin-induced growth arrest at G2. ED induced interferon genes, which correlated with breast tumors containing a higher proportion of tumor-infiltrating lymphocytes. ED also increased the expression of immune checkpoint agonists and cancer testis antigens. Analysis of TNBC xenografts showed that EAD enhanced the inflammation score in nude mice. Among the genes differentially regulated between the EAD and ED groups, an all-trans retinoic acid (ATRA)-regulated gene, DHRS3, was induced in EAD-treated xenografts. DHRS3 was expressed at lower levels in human TNBC metastases compared to normal breast or primary tumors. High expression of ED-induced growth arrest and inflammatory genes was associated with better prognosis in TNBC patients. CONCLUSIONS: Entinostat potentiated doxorubicin-mediated cell death and the combination induced inflammatory signatures. The ED-induced immunomodulation may improve immunotherapy. Addition of ATRA to ED may potentiate inflammation and contribute to TNBC regression.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzamides/pharmacology , Benzamides/therapeutic use , Breast/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Datasets as Topic , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Synergism , Epigenesis, Genetic/drug effects , Female , Gene Expression Profiling/methods , Humans , Mice , Mice, Nude , Oligonucleotide Array Sequence Analysis/methods , Pyridines/pharmacology , Pyridines/therapeutic use , Survival Analysis , Tretinoin/pharmacology , Tretinoin/therapeutic use , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
3.
Breast Cancer Res ; 16(5): 441, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25248717

ABSTRACT

INTRODUCTION: The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the analysis of methylation of the PREX1 gene promoter. METHODS: To determine the methylation status of the PREX1 promoter region, we used bisulfite genomic sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of breast cancer cells with the demethylating agent 5-aza-2'-deoxycitidine. PREX1 gene methylation in different human breast cancer subtypes was analyzed from the TCGA database. RESULTS: We found that the human PREX1 gene promoter has a CpG island located between -1.2 kb and +1.4 kb, and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation of the PREX1 promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent 5-aza-2'-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast cancer is a consequence of PREX1 promoter demethylation. Unlike PREX1, the pro-metastatic Rho/Rac-GEF, VAV3, is not regulated by methylation. Notably, PREX1 gene promoter hypomethylation is a prognostic marker of poor patient survival. CONCLUSIONS: Our study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , DNA Methylation , Guanine Nucleotide Exchange Factors/metabolism , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Line, Tumor , DNA Modification Methylases/antagonists & inhibitors , Decitabine , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , Humans , Kaplan-Meier Estimate , Promoter Regions, Genetic , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism
4.
Cancer Res ; 84(12): 1978-1995, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38635895

ABSTRACT

T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an inhibitory receptor on immune cells that outcompetes an activating receptor, CD226, for shared ligands. Tumor-infiltrating lymphocytes express TIGIT and CD226 on regulatory T cells (Treg) and on CD8+ T cells with tumor-reactive or exhausted phenotypes, supporting the potential of therapeutically targeting TIGIT to enhance antitumor immunity. To optimize the efficacy of therapeutic antibodies against TIGIT, it is necessary to understand IgG Fc (Fcγ) receptor binding for therapeutic benefit. In this study, we showed that combining Fc-enabled (Fce) or Fc-silent (Fcs) anti-TIGIT with antiprogrammed cell death protein 1 in mice resulted in enhanced control of tumors by differential mechanisms: Fce anti-TIGIT promoted the depletion of intratumoral Treg, whereas Fcs anti-TIGIT did not. Despite leaving Treg numbers intact, Fcs anti-TIGIT potentiated the activation of tumor-specific exhausted CD8+ populations in a lymph node-dependent manner. Fce anti-TIGIT induced antibody-dependent cell-mediated cytotoxicity against human Treg in vitro, and significant decreases in Treg were measured in the peripheral blood of patients with phase I solid tumor cancer treated with Fce anti-TIGIT. In contrast, Fcs anti-TIGIT did not deplete human Treg in vitro and was associated with anecdotal objective clinical responses in two patients with phase I solid tumor cancer whose peripheral Treg frequencies remained stable on treatment. Collectively, these data provide evidence for pharmacologic activity and antitumor efficacy of anti-TIGIT antibodies lacking the ability to engage Fcγ receptor. SIGNIFICANCE: Fcs-silent anti-TIGIT antibodies enhance the activation of tumor-specific pre-exhausted T cells and promote antitumor efficacy without depleting T regulatory cells.


Subject(s)
Receptors, Immunologic , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Receptors, Immunologic/immunology , Receptors, Immunologic/antagonists & inhibitors , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Female , CD8-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy
5.
Oncogene ; 40(38): 5752-5763, 2021 09.
Article in English | MEDLINE | ID: mdl-34341513

ABSTRACT

Expression of ß-crystallin B2 (CRYßB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYßB2-induced malignancy and the association of CRYßB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYßB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYßB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYßB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYßB2 and the nucleolar protein, nucleolin. CRYßB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYßB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYßB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYßB2 in primary TNBC correlates with decreased survival. In summary, CRYßB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYßB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.


Subject(s)
Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Triple Negative Breast Neoplasms/pathology , Up-Regulation , beta-Crystallin B Chain/metabolism , Animals , Aptamers, Nucleotide/administration & dosage , Aptamers, Nucleotide/pharmacology , Cell Nucleolus/drug effects , Cell Nucleolus/metabolism , Cell Nucleolus/pathology , Cell Proliferation/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/pharmacology , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , beta-Crystallin B Chain/genetics , Nucleolin
6.
Article in English | MEDLINE | ID: mdl-33335013

ABSTRACT

Chromosomal structural variation can cause severe neurodevelopmental and neuropsychiatric phenotypes. Here we present a nonverbal female adolescent with severe stereotypic movement disorder with severe problem behavior (e.g., self-injurious behavior, aggression, and disruptive and destructive behaviors), autism spectrum disorder, severe intellectual disability, attention deficit hyperactivity disorder, and global developmental delay. Previous cytogenetic analysis revealed balanced translocations present in the patient's apparently normal mother. We hypothesized the presence of unbalanced translocations in the patient due to maternal history of spontaneous abortions. Whole-genome sequencing and whole-genome optical mapping, complementary next-generation genomic technologies capable of the accurate and robust detection of structural variants, identified t(3;10), t(10;14), and t(3;14) three-way balanced translocations in the mother and der(10)t(3;14;10) and der(14)t(3;14;10) translocations in the patient. Instead of a t(3;10), she inherited a normal maternal copy of Chromosome 3, resulting in an unbalanced state of a 3q28qter duplication and 10q26.2qter deletion. Copy-imbalanced genes in one or both of these regions, such as DLG1, DOCK1, and EBF3, may contribute to the patient's phenotype that spans neurodevelopmental, musculoskeletal, and psychiatric domains, with the possible contribution of a maternally inherited 15q13.2q13.3 deletion.


Subject(s)
Chromosome Deletion , Nervous System Malformations/genetics , Self-Injurious Behavior , Translocation, Genetic , Adolescent , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Discs Large Homolog 1 Protein , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/therapy , Phenotype , Specific Language Disorder/genetics , Transcription Factors , Whole Genome Sequencing , rac GTP-Binding Proteins
7.
Front Oncol ; 10: 581459, 2020.
Article in English | MEDLINE | ID: mdl-33520697

ABSTRACT

Blocking tumor angiogenesis is an appealing therapeutic strategy, but to date, success has been elusive. We previously identified HEYL, a downstream target of Notch signaling, as an overexpressed gene in both breast cancer cells and as a tumor endothelial marker, suggesting that HEYL overexpression in both compartments may contribute to neoangiogenesis. Carcinomas arising in double transgenic Her2-neu/HeyL mice showed higher tumor vessel density and significantly faster growth than tumors in parental Her2/neu mice. Providing mechanistic insight, microarray-based mRNA profiling of HS578T-tet-off-HEYL human breast cancer cells revealed upregulation of several angiogenic factors including CXCL1/2/3 upon HEYL expression, which was validated by RT-qPCR and protein array analysis. Upregulation of the cytokines CXCL1/2/3 occurred through direct binding of HEYL to their promoter sequences. We found that vessel growth and migration of human vascular endothelial cells (HUVECs) was promoted by conditioned medium from HS578T-tet-off-HEYL carcinoma cells, but was blocked by neutralizing antibodies against CXCL1/2/3. Supporting these findings, suppressing HEYL expression using shRNA in MDA-MB-231 cells significantly reduced tumor growth. In addition, suppressing the action of proangiogenic cytokines induced by HEYL using a small molecule inhibitor of the CXCl1/2/3 receptor, CXCR2, in combination with the anti-VEGF monoclonal antibody, bevacizumab, significantly reduced tumor growth of MDA-MB-231 xenografts. Thus, HEYL expression in tumor epithelium has a profound effect on the vascular microenvironment in promoting neoangiogenesis. Furthermore, we show that lack of HEYL expression in endothelial cells leads to defects in neoangiogenesis, both under normal physiological conditions and in cancer. Thus, HeyL-/- mice showed impaired vessel outgrowth in the neonatal retina, while the growth of mammary tumor cells E0771 was retarded in syngeneic HeyL-/- mice compared to wild type C57/Bl6 mice. Blocking HEYL's angiogenesis-promoting function in both tumor cells and tumor-associated endothelium may enhance efficacy of therapy targeting the tumor vasculature in breast cancer.

8.
NPJ Breast Cancer ; 6: 3, 2020.
Article in English | MEDLINE | ID: mdl-32025567

ABSTRACT

We lack tools to risk-stratify triple-negative breast cancer (TNBC). Our goal was to develop molecular tools to predict disease recurrence. Methylation array analysis was performed on 110 samples treated by locoregional therapy obtained from institutional cohorts. Discovered marker sets were then tested by Kaplan-Meier analyses in a prospectively collected TNBC cohort of 49 samples from the no-chemotherapy arms of IBCSG trials VIII and IX, and by logistic regression in a chemotherapy-treated cohort of 121 TNBCs from combined IBCSG trials and institutional repositories. High methylation was associated with shorter recurrence-free interval in the no-chemotherapy arm of the IBCSG studies, as well as in the chemotherapy-treated patients within the combined institutional and IBCSG chemotherapy cohorts (100 marker panel, p = 0.002; 30 marker panel, p = 0.05). Chromosome 19 sites were enriched among these loci. In conclusion, our hypermethylation signatures identify increased recurrence risk independent of whether patients receive chemotherapy.

9.
J Comput Biol ; 26(4): 295-304, 2019 04.
Article in English | MEDLINE | ID: mdl-30789293

ABSTRACT

Genetic and epigenetic changes drive carcinogenesis, and their integrated analysis provides insights into mechanisms of cancer development. Computational methods have been developed to measure copy number variation (CNV) from methylation array data, including ChAMP-CNV, CN450K, and, introduced here, Epicopy. Using paired single nucleotide polymorphism (SNP) and methylation array data from the public The Cancer Genome Atlas repository, we optimized CNV calling and benchmarked the performance of these methods. We optimized the thresholds of all three methods and showed comparable performance across methods. Using Epicopy as a representative analysis of Illumina450K array, we show that Illumina450K-derived CNV methods achieve a sensitivity of 0.7 and a positive predictive value of 0.75 in identifying CNVs, which is similar to results achieved when comparing competing SNP microarray platforms with each other.


Subject(s)
Computational Biology/methods , DNA Copy Number Variations , DNA Methylation , Neoplasms/genetics , Algorithms , Epigenesis, Genetic , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide
10.
Nat Commun ; 9(1): 1725, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29713003

ABSTRACT

Breast cancer (BC) in the Asia Pacific regions is enriched in younger patients and rapidly rising in incidence yet its molecular bases remain poorly characterized. Here we analyze the whole exomes and transcriptomes of 187 primary tumors from a Korean BC cohort (SMC) enriched in pre-menopausal patients and perform systematic comparison with a primarily Caucasian and post-menopausal BC cohort (TCGA). SMC harbors higher proportions of HER2+ and Luminal B subtypes, lower proportion of Luminal A with decreased ESR1 expression compared to TCGA. We also observe increased mutation prevalence affecting BRCA1, BRCA2, and TP53 in SMC with an enrichment of a mutation signature linked to homologous recombination repair deficiency in TNBC. Finally, virtual microdissection and multivariate analyses reveal that Korean BC status is independently associated with increased TIL and decreased TGF-ß signaling expression signatures, suggesting that younger Asian BCs harbor more immune-active microenvironment than western BCs.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Lobular/genetics , Transcriptome , Adult , Asian People , BRCA1 Protein/genetics , BRCA1 Protein/immunology , BRCA2 Protein/genetics , BRCA2 Protein/immunology , Biomarkers, Tumor/immunology , Breast Neoplasms/ethnology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carcinoma, Ductal/ethnology , Carcinoma, Ductal/immunology , Carcinoma, Ductal/pathology , Carcinoma, Lobular/ethnology , Carcinoma, Lobular/immunology , Carcinoma, Lobular/pathology , Cohort Studies , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Female , Humans , Middle Aged , Neoplasm Staging , Postmenopause , Premenopause , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , White People , Exome Sequencing
11.
Mol Oncol ; 11(5): 552-566, 2017 05.
Article in English | MEDLINE | ID: mdl-28296140

ABSTRACT

Although mutations in the phosphoinositide 3-kinase catalytic subunit (PIK3CA) are common in breast cancer, PI3K inhibitors alone have shown modest efficacy. We sought to identify additional pathways altered in PIK3CA-mutant tumors that might be targeted in combination with PI3K inhibitors. We generated two transgenic mouse models expressing the human PIK3CA-H1047R- and the -E545K hotspot-mutant genes in the mammary gland and evaluated their effects on development and tumor formation. Molecular analysis identified pathways altered in these mutant tumors, which were also targeted in multiple cell lines derived from the PIK3CA tumors. Finally, public databases were analyzed to determine whether novel pathways identified in the mouse tumors were altered in human tumors harboring mutant PIK3CA. Mutant mice showed increased branching and delayed involution of the mammary gland compared to parental FVB/N mice. Mammary tumors arose in 30% of the MMTV-PIK3CA-H1047R and in 13% of -E545K mice. Compared to MMTV-Her-2 transgenic mouse mammary tumors, H1047R tumors showed increased upregulation of Wnt/ß-catenin/Axin2, hepatocyte growth factor (Hgf)/Stat3, insulin-like growth factor 2 (Igf-2), and Igf-1R pathways. Inhibitors of STAT3, ß-catenin, and IGF-1R sensitized H1047R-derived mouse tumor cells and PIK3CA-H1047R overexpressing human HS578T breast cancer cells to the cytotoxic effects of PI3K inhibitors. Analysis of The Cancer Genome Atlas database showed that, unlike primary PIK3CA-wild-type and HER-2+ breast carcinomas, PIK3CA-mutant tumors display increased expression of AXIN2, HGF, STAT3, IGF-1, and IGF-2 mRNA and activation of AKT, IGF1-MTOR, and WNT canonical signaling pathways. Drugs targeting additional pathways that are altered in PIK3CA-mutant tumors may improve treatment regimens using PI3K inhibitors alone.


Subject(s)
Antineoplastic Agents/therapeutic use , Class I Phosphatidylinositol 3-Kinases/genetics , Drug Resistance, Neoplasm/drug effects , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Humans , Mice , Mice, Transgenic , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, IGF Type 1 , Receptors, Somatomedin/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects , beta Catenin/antagonists & inhibitors
12.
Cancer Res ; 76(7): 2013-2024, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26787836

ABSTRACT

Efforts to induce the differentiation of cancer stem cells through treatment with all-trans retinoic acid (ATRA) have yielded limited success, partially due to the epigenetic silencing of the retinoic acid receptor (RAR)-ß The histone deacetylase inhibitor entinostat is emerging as a promising antitumor agent when added to the standard-of-care treatment for breast cancer. However, the combination of epigenetic, cellular differentiation, and chemotherapeutic approaches against triple-negative breast cancer (TNBC) has not been investigated. In this study, we found that combined treatment of TNBC xenografts with entinostat, ATRA, and doxorubicin (EAD) resulted in significant tumor regression and restoration of epigenetically silenced RAR-ß expression. Entinostat and doxorubicin treatment inhibited topoisomerase II-ß (TopoII-ß) and relieved TopoII-ß-mediated transcriptional silencing of RAR-ß Notably, EAD was the most effective combination in inducing differentiation of breast tumor-initiating cells in vivo Furthermore, gene expression analysis revealed that the epithelium-specific ETS transcription factor-1 (ESE-1 or ELF3), known to regulate proliferation and differentiation, enhanced cell differentiation in response to EAD triple therapy. Finally, we demonstrate that patient-derived metastatic cells also responded to treatment with EAD. Collectively, our findings strongly suggest that entinostat potentiates doxorubicin-mediated cytotoxicity and retinoid-driven differentiation to achieve significant tumor regression in TNBC. Cancer Res; 76(7); 2013-24. ©2016 AACR.


Subject(s)
Epigenesis, Genetic/genetics , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Differentiation , Cell Line, Tumor , Humans
13.
J Clin Oncol ; 34(36): 4390-4397, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27998227

ABSTRACT

Purpose Gene expression profiling assays are frequently used to guide adjuvant chemotherapy decisions in hormone receptor-positive, lymph node-negative breast cancer. We hypothesized that the clinical value of these new tools would be more fully realized when appropriately integrated with high-quality clinicopathologic data. Hence, we developed a model that uses routine pathologic parameters to estimate Oncotype DX recurrence score (ODX RS) and independently tested its ability to predict ODX RS in clinical samples. Patients and Methods We retrospectively reviewed ordered ODX RS and pathology reports from five institutions (n = 1,113) between 2006 and 2013. We used locally performed histopathologic markers (estrogen receptor, progesterone receptor, Ki-67, human epidermal growth factor receptor 2, and Elston grade) to develop models that predict RS-based risk categories. Ordering patterns at one site were evaluated under an integrated decision-making model incorporating clinical treatment guidelines, immunohistochemistry markers, and ODX. Final locked models were independently tested (n = 472). Results Distribution of RS was similar across sites and to reported clinical practice experience and stable over time. Histopathologic markers alone determined risk category with > 95% confidence in > 55% (616 of 1,113) of cases. Application of the integrated decision model to one site indicated that the frequency of testing would not have changed overall, although ordering patterns would have changed substantially with less testing of estimated clinical risk-high or clinical risk-low cases and more testing of clinical risk-intermediate cases. In the validation set, the model correctly predicted risk category in 52.5% (248 of 472). Conclusion The proposed model accurately predicts high- and low-risk RS categories (> 25 or ≤ 25) in a majority of cases. Integrating histopathologic and molecular information into the decision-making process allows refocusing the use of new molecular tools to cases with uncertain risk.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Profiling/statistics & numerical data , Adult , Aged , Breast Neoplasms/therapy , Cohort Studies , Female , Humans , Immunohistochemistry , Ki-67 Antigen/genetics , Linear Models , Middle Aged , Multivariate Analysis , Neoplasm Invasiveness/pathology , Neoplasm Staging , Prognosis , Receptor, ErbB-2/genetics , Receptors, Progesterone/genetics , Retrospective Studies
14.
Thyroid ; 26(4): 532-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950846

ABSTRACT

BACKGROUND: Studies have demonstrated an association of the BRAF(V600E) mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAF(V600E) mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM). METHODS: Between January 2012 and June 2013, 237 consecutive patients underwent total thyroidectomy and prophylactic central lymph node dissection (CLND) at four endocrine surgery centers. All tumors were tested for the presence of the BRAF(V600E) mutation and miR-21, miR-146b-3p, miR-146b-5p, miR-204, miR-221, miR-222, and miR-375 expression. Bivariate and multivariable analyses were performed to examine associations between molecular markers and aggressive clinicopathologic features of PTC. RESULTS: Multivariable logistic regression analysis of all clinicopathologic features found miR-146b-3p and miR-146b-5p to be independent predictors of CLNM, while the presence of BRAF(V600E) almost reached significance. Multivariable logistic regression analysis limited to only predictors available preoperatively (molecular markers, age, sex, and tumor size) found miR-146b-3p, miR-146b-5p, miR-222, and BRAF(V600E) mutation to predict CLNM independently. While BRAF(V600E) was found to be associated with CLNM (48% mutated in node-positive cases vs. 28% mutated in node-negative cases), its positive and negative predictive values (48% and 72%, respectively) limit its clinical utility as a stand-alone marker. In the subgroup analysis focusing on only classical variant of PTC cases (CVPTC), undergoing prophylactic lymph node dissection, multivariable logistic regression analysis found only miR-146b-5p and miR-222 to be independent predictors of CLNM, while BRAF(V600E) was not significantly associated with CLNM. CONCLUSION: In the patients undergoing prophylactic CLNDs, miR-146b-3p, miR-146b-5p, and miR-222 were found to be predictive of CLNM preoperatively. However, there was significant overlap in expression of these miRs in the two outcome groups. The BRAF(V600E) mutation, while being a marker of CLNM when considering only preoperative variables among all histological subtypes, is likely not a useful stand-alone marker clinically because the difference between node-positive and node-negative cases was small. Furthermore, it lost significance when examining only CVPTC. Overall, our results speak to the concept and interpretation of statistical significance versus actual applicability of molecular markers, raising questions about their clinical usefulness as individual prognostic markers.


Subject(s)
Carcinoma/genetics , Lymphatic Metastasis , MicroRNAs/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Adult , Biomarkers, Tumor/genetics , Carcinoma/pathology , Carcinoma, Papillary/pathology , Decision Making , Female , Humans , Lymph Node Excision , Male , MicroRNAs/metabolism , Middle Aged , Multivariate Analysis , Prognosis , Prospective Studies , Thyroid Cancer, Papillary , Thyroid Neoplasms/pathology , Thyroidectomy/methods
15.
Cancer Res ; 74(22): 6509-18, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25217524

ABSTRACT

Acquired resistance to TGFß is a key step in the early stages of tumorigenesis. Mutations in TGFß signaling components are rare, and little is known about the development of resistance in breast cancer. On the other hand, an activated Notch pathway is known to play a substantial role in promoting breast cancer development. Here, we present evidence of crosstalk between these two pathways through HEYL. HEYL, a basic helix-loop-helix transcription factor and a direct target of Notch signaling, is specifically overexpressed in breast cancer. HEYL represses TGFß activity by binding to TGFß-activated Smads. HeyL(-/-) mice have defective mammary gland development with fewer terminal end buds. On the other hand, HeyL transgenic mice show accelerated mammary gland epithelial proliferation and 24% of multiparous mice develop mammary gland cancer. Therefore, repression of TGFß signaling by Notch acting through HEYL may promote initiation of breast cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Breast Neoplasms/pathology , Receptors, Notch/physiology , Repressor Proteins/physiology , Signal Transduction/physiology , Transforming Growth Factor beta/pharmacology , Animals , Cells, Cultured , Female , Humans , Mice , Mice, Transgenic , Signal Transduction/drug effects , Smad3 Protein/physiology
16.
Cancer Res ; 74(8): 2160-70, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24737128

ABSTRACT

The ability to consistently detect cell-free tumor-specific DNA in peripheral blood of patients with metastatic breast cancer provides the opportunity to detect changes in tumor burden and to monitor response to treatment. We developed cMethDNA, a quantitative multiplexed methylation-specific PCR assay for a panel of ten genes, consisting of novel and known breast cancer hypermethylated markers identified by mining our previously reported study of DNA methylation patterns in breast tissue (103 cancer, 21 normal on the Illumina HumanMethylation27 Beadchip) and then validating the 10-gene panel in The Cancer Genome Atlas project breast cancer methylome database. For cMethDNA, a fixed physiologic level (50 copies) of artificially constructed, standard nonhuman reference DNA specific for each gene is introduced in a constant volume of serum (300 µL) before purification of the DNA, facilitating a sensitive, specific, robust, and quantitative assay of tumor DNA, with broad dynamic range. Cancer-specific methylated DNA was detected in training (28 normal, 24 cancer) and test (27 normal, 33 cancer) sets of recurrent stage IV patient sera with a sensitivity of 91% and a specificity of 96% in the test set. In a pilot study, cMethDNA assay faithfully reflected patient response to chemotherapy (N = 29). A core methylation signature present in the primary breast cancer was retained in serum and metastatic tissues collected at autopsy two to 11 years after diagnosis of the disease. Together, our data suggest that the cMethDNA assay can detect advanced breast cancer, and monitor tumor burden and treatment response in women with metastatic breast cancer.


Subject(s)
Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/genetics , DNA, Neoplasm/blood , Adult , Aged , Breast Neoplasms/pathology , Case-Control Studies , DNA Methylation , Female , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Prospective Studies , Reproducibility of Results
17.
Cancer Res ; 73(17): 5449-58, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23832664

ABSTRACT

Most breast cancers expressing the estrogen receptor α (ERα) are treated successfully with the receptor antagonist tamoxifen (TAM), but many of these tumors recur. Elevated expression of the homeodomain transcription factor HOXB13 correlates with TAM-resistance in ERα-positive (ER+) breast cancer, but little is known regarding the underlying mechanism. Our comprehensive evaluation of HOX gene expression using tiling microarrays, with validation, showed that distant metastases from TAM-resistant patients also displayed high HOXB13 expression, suggesting a role for HOXB13 in tumor dissemination and survival. Here we show that HOXB13 confers TAM resistance by directly downregulating ERα transcription and protein expression. HOXB13 elevation promoted cell proliferation in vitro and growth of tumor xenografts in vivo. Mechanistic investigations showed that HOXB13 transcriptionally upregulated interleukin (IL)-6, activating the mTOR pathway via STAT3 phosphorylation to promote cell proliferation and fibroblast recruitment. Accordingly, mTOR inhibition suppressed fibroblast recruitment and proliferation of HOXB13-expressing ER+ breast cancer cells and tumor xenografts, alone or in combination with TAM. Taken together, our results establish a function for HOXB13 in TAM resistance through direct suppression of ERα and they identify the IL-6 pathways as mediator of disease progression and recurrence.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Interleukin-6/metabolism , Tamoxifen/pharmacology , Animals , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis/drug effects , Blotting, Western , Breast/metabolism , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Proliferation/drug effects , Cells, Cultured , Chromatin Immunoprecipitation , Down-Regulation , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Female , Homeodomain Proteins/genetics , Humans , Luciferases/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Survival Rate , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL