Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Korean Med Sci ; 39(13): e104, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38599596

ABSTRACT

BACKGROUND: The hollow-fiber infection model (HFIM) is a valuable tool for evaluating pharmacokinetics/pharmacodynamics relationships and determining the optimal antibiotic dose in monotherapy or combination therapy, but the application for personalized precision medicine in tuberculosis treatment remains limited. This study aimed to evaluate the efficacy of adjusted antibiotic doses for a tuberculosis patient using HFIM. METHODS: Model-based Bayesian forecasting was utilized to assess the proposed reduction of the isoniazid dose from 300 mg daily to 150 mg daily in a patient with an ultra-slow-acetylation phenotype. The efficacy of the adjusted 150-mg dose was evaluated in a time-to-kill assay performed using the bacterial isolate Mycobacterium tuberculosis (Mtb) H37Ra in a HFIM that mimicked the individual pharmacokinetic profile of the patient. RESULTS: The isoniazid concentration observed in the HFIM adequately reflected the target drug exposures simulated by the model. After 7 days of repeated dose administration, isoniazid killed 4 log10 Mtb CFU/mL in the treatment arm, while the control arm without isoniazid increased 1.6 log10 CFU/mL. CONCLUSION: Our results provide an example of the utility of the HFIM for predicting the efficacy of specific recommended doses of anti-tuberculosis drugs in real clinical setting.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Bayes Theorem , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology
2.
Toxicol Appl Pharmacol ; 473: 116597, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37321324

ABSTRACT

Tacrolimus (TAC)-based treatment is associated with nephrotoxicity and hepatotoxicity; however, the underlying molecular mechanisms responsible for this toxicity have not been fully explored. This study elucidated the molecular processes underlying the toxic effects of TAC using an integrative omics approach. Rats were sacrificed after 4 weeks of daily oral TAC administration at a dose of 5 mg/kg. The liver and kidney underwent genome-wide gene expression profiling and untargeted metabolomics assays. Molecular alterations were identified using individual data profiling modalities and further characterized by pathway-level transcriptomics-metabolomics integration analysis. Metabolic disturbances were mainly related to an imbalance in oxidant-antioxidant status, as well as in lipid and amino acid metabolism in the liver and kidney. Gene expression profiles also indicated profound molecular alterations, including in genes associated with a dysregulated immune response, proinflammatory signals, and programmed cell death in the liver and kidney. Joint-pathway analysis indicated that the toxicity of TAC was associated with DNA synthesis disruption, oxidative stress, and cell membrane permeabilization, as well as lipid and glucose metabolism. In conclusion, our pathway-level integration of transcriptome and metabolome and conventional analyses of individual omics profiles, provided a more comprehensive picture of the molecular changes resulting from TAC toxicity. This study also serves as a valuable resource for subsequent investigations aiming to understand the mechanism underlying the molecular toxicology of TAC.


Subject(s)
Multiomics , Tacrolimus , Rats , Animals , Tacrolimus/toxicity , Kidney , Metabolomics/methods , Lipids
3.
BMC Pulm Med ; 23(1): 471, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001469

ABSTRACT

BACKGROUND: The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltransferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this prospective multinational cohort. METHODS: Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic DNA analysis. RESULTS: Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male proportion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% in LTBI, respectively. CONCLUSIONS: Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps in optimizing treatment. Further longitudinal data are required for personalized precision medicine. TRIAL REGISTRATION: This study registered ClinicalTrials.gov NO. NCT05280886.


Subject(s)
Arylamine N-Acetyltransferase , Diabetes Mellitus , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Male , Female , Latent Tuberculosis/epidemiology , Precision Medicine , Prospective Studies , Risk Adjustment , Tuberculosis/drug therapy , Nontuberculous Mycobacteria , Mycobacterium tuberculosis/genetics , Liver-Specific Organic Anion Transporter 1/genetics , Arylamine N-Acetyltransferase/genetics
4.
Antimicrob Agents Chemother ; 66(4): e0215821, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35254089

ABSTRACT

In this study, we explored clofazimine (CFZ) as a potential substrate of uptake and efflux transporters that might be involved in CFZ disposition, using transporter gene overexpressing cell lines in vitro. The intracellular concentrations of CFZ were significantly increased in the presence of selective inhibitors of P-gp and BCRP, which include verapamil, cyclosporine-A, PSC-833, quinidine, Ko143, and daunorubicin. In a bidirectional transport assay using transwell cultures of cell lines overexpressing P-gp and BCRP, the mean efflux ratios of CFZ were found to be 4.17 ± 0.63 and 3.37 ± 1.2, respectively. The Km and maximum rate of uptake (Vmax) were estimated to be 223.3 ± 14.73 µM and 548.8 ± 87.15 pmol/min/mg protein for P-gp and 381.9 ± 25.07 µM and 5.8 ± 1.22 pmol/min/mg protein for BCRP, respectively. Among the uptake transporters screened, the CFZ uptake rate was increased 1.93 and 3.09-fold in HEK293 cell lines overexpressing OAT1 and OAT3, respectively, compared to the control cell lines, but no significant uptake was observed in cell lines overexpressing OCT1, OCT2, OATP1B1, OATP1B3, OATP2B1, or NTCP. Both OAT1- and OAT3-mediated uptake was inhibited by the selective inhibitors diclofenac, probenecid, and butanesulfonic acid. The Km and Vmax values of CFZ were estimated to be 0.63 ± 0.15 µM and 8.23 ± 1.03 pmol/min/mg protein, respectively, for OAT1 and 0.47 ± 0.1 µM and 17.81 ± 2.19 pmol/min/mg protein, respectively, for OAT3. These findings suggest that CFZ is a novel substrate of BCRP, OAT1, and OAT3 and a known substrate of P-gp in vitro.


Subject(s)
Clofazimine , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Clofazimine/pharmacology , Drug Interactions , HEK293 Cells , Humans , Membrane Transport Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
5.
Antimicrob Agents Chemother ; 66(10): e0056522, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36190267

ABSTRACT

Clofazimine [N,5-bis(4-chlorophenyl)-3-[(propane-2-yl)rimino]-3,5-dihydrophenazin-2-amine] is an antimycobacterial agent used as a second-line antituberculosis (anti-TB) drug. Nonetheless, little information is known about the metabolic routes of clofazimine, and the enzymes involved in metabolism. This study aimed to characterize the metabolic pathways and enzymes responsible for the metabolism of clofazimine in human liver microsomes. Eight metabolites, including four oxidative metabolites, three glucuronide conjugates, and one sulfate conjugate were identified, and their structures were deduced based on tandem mass spectrometry (MS/MS) spectra. Hydroxylated clofazimine and hydrated clofazimine was generated even in the absence of the NADPH generating system presumably via a nonenzymatic pathway. Hydrolytic-dehalogenated clofazimine was catalyzed mainly by CYP1A2 whereas hydrolytic-deaminated clofazimine was formed by CYP3A4/A5. In case of glucuronide conjugates, UGT1A1, UGT1A3, and UGT1A9 showed catalytic activity toward hydroxylated and hydrated clofazimine glucuronide whereas hydrolytic-deaminated clofazimine glucuronide was catalyzed by UGT1A4, UGT1A9, UGT1A3, and UGT2B4. Our results suggested that CYP1A2 and CYP3A are involved in the formation of oxidative metabolites while UGT1A1, 1A3, 1A4, 1A9, and 2B4 are involved in the formation of glucuronide conjugates of oxidative metabolites of clofazimine.


Subject(s)
Glucuronides , Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Glucuronides/chemistry , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP3A/metabolism , Clofazimine/metabolism , Tandem Mass Spectrometry , NADP/metabolism , Propane/metabolism , Glucuronosyltransferase , Sulfates/metabolism , Amines/metabolism , Anti-Bacterial Agents/metabolism , Liver/metabolism
6.
Toxicol Appl Pharmacol ; 439: 115928, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35189178

ABSTRACT

The mechanisms underlying colistin-induced toxicity are not fully understood. This study used untargeted metabolomics and transcriptomics to elucidate the molecular processes occurring in the liver and kidney of rats after treatment with colistin methanesulfonate (CMS). Rats were treated with 50 mg/kg CMS (high-dose), 25 mg/kg CMS (low-dose), or vehicle control, either as a single dose or once daily for 1 or 4 weeks. We found that metabolic alterations were dose- and treatment duration-dependent in the kidney, whereas mild changes were noted in the liver. Metabolic profiles in the high-dose, low-dose, and control groups of both tissues could be classified using partial least-squares discriminant analysis. Metabolic alterations were associated with the citric acid cycle and related processes, disrupted balance between pro-oxidants and antioxidants, inflammatory responses, and amino acid and nucleic acid metabolism. Gene expression profiles further showed that high-dose treatment was associated with disrupted metabolism, oxidative stress, and proinflammatory signals in the kidney. The expression levels of genes related to the cell cycle, DNA replication, and programmed cell death were also predominantly upregulated. These findings suggested that high-dose treatment was associated with a dramatic increase in cellular kidney injury, while only minor effects were observed in the low-dose group. Almost no significant gene expression was changed in the liver, even with high-dose CMS. In conclusion, untargeted metabolomics and transcriptomics provided better insights into the biological mechanisms underlying colistin-induced nephrotoxicity.


Subject(s)
Colistin , Transcriptome , Animals , Anti-Bacterial Agents/pharmacology , Colistin/metabolism , Colistin/toxicity , Gene Expression Profiling , Kidney , Metabolomics , Rats
7.
Br J Clin Pharmacol ; 88(3): 1159-1169, 2022 03.
Article in English | MEDLINE | ID: mdl-34432302

ABSTRACT

AIMS: Tenofovir and para-aminosalicylic acid (PAS) may be coprescribed to treat patients with concomitant infections of human immunodeficiency virus and Mycobacterium tuberculosis bacteria. Both drugs are known to have remarkable renal uptake transporter-mediated clearance. Owing to the lack of clinical studies on drug-drug interaction between the 2 drugs, we conducted a translational clinical study to investigate the effect of PAS on tenofovir pharmacokinetics (PK). METHODS: Initially, we studied in vitro renal uptake transporter-mediated drug-drug interactions using stably transfected cells with human organic anion transporters (OAT1 and OAT3). Later, we estimated clinical drug interactions using static and physiologically based PK modelling. Finally, we investigated the effects of PAS-calcium formulation (PAS-Ca) on tenofovir disoproxil fumarate PK in healthy male Korean subjects. RESULTS: PAS inhibited OAT1- and OAT3-mediated tenofovir uptake in vitro. The physiologically based PK drug-drug interaction model suggested a 1.26-fold increase in tenofovir peak plasma concentration when coadministered with PAS. By contrast, an open-label, randomized, crossover clinical trial evaluating the effects of PAS-Ca on tenofovir PK showed significantly altered geometric mean ratio (90% confidence intervals) of maximum plasma concentration (Cmax ) and area under the curve (AUC0-inf ) by 0.33 (0.28-0.38) and 0.29 (0.26-0.33), respectively. CONCLUSION: Our study findings suggest that the PAS-Ca formulation significantly reduced systemic exposure to tenofovir through an unexplained mechanism, which was contrary to the initial prediction. Caution should be exercised while predicting in vivo PK profiles from in vitro data, particularly when there are potential confounders such as pharmaceutical interactions.


Subject(s)
Aminosalicylic Acid , HIV Infections , Aminosalicylic Acid/pharmacokinetics , Aminosalicylic Acid/therapeutic use , Drug Interactions , HIV Infections/drug therapy , Humans , Male , Research Subjects , Tenofovir/pharmacology , Tenofovir/therapeutic use , Translational Research, Biomedical
8.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500699

ABSTRACT

Isoniazid and its metabolites are potentially associated with hepatotoxicity and treatment outcomes in patients who receive antituberculosis (TB) therapy. To further understand the pharmacokinetic profiles of these molecules, a method based on LC-MS/MS was developed to determine the concentration of these compounds in human plasma. Isoniazid, acetylisoniazid, and isonicotinic acid were directly analyzed, whereas hydrazine and acetylhydrazine were determined after derivatization using p-tolualdehyde. Chromatographic separation was conducted on reversed-phase C18 columns with gradient elution, and detection was carried out in multiple reaction monitoring mode. The calibration curves were linear with correlation coefficients (r) greater than 0.9947 for all analytes. The intra- and inter-day precision was less than 13.43%, and the accuracy ranged between 91.63 and 114.00%. The recovery and matrix effect of the analytes were also consistent (coefficient of variation was less than 9.36%). The developed method successfully quantified isoniazid and its metabolites in TB patients. The method has broad applications in clinical research, including isoniazid one-point-based therapeutic drug monitoring, genotype-phenotype association studies of isoniazid metabolic profile and isoniazid-induced hepatotoxicity, and the initial dose prediction of isoniazid using population pharmacokinetic modeling.


Subject(s)
Antitubercular Agents , Tuberculosis , Humans , Chromatography, Liquid , Antitubercular Agents/therapeutic use , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Isoniazid/therapeutic use , Tuberculosis/drug therapy , Reproducibility of Results
9.
Article in English | MEDLINE | ID: mdl-29712654

ABSTRACT

LCB01-0371 is a novel oxazolidinone with broad-spectrum activity against Gram-positive pathogens in both in vitro studies and animal infection models. The objectives of this study were to evaluate its safety, tolerability, pharmacokinetics, and pharmacodynamics following single ascending doses. Single oral doses of 600 mg linezolid, a placebo, or LCB01-0371 of between 50 mg and 3,200 mg were tested in 69 healthy male subjects. Blood and urine were sampled, LCB01-0371 concentrations were measured, and the serum inhibitory and bactericidal titers of LCB01-0371 and linezolid were determined. LCB01-0371 was well tolerated up to 2,400 mg. The most common drug-related clinical and laboratory adverse events were nausea with or without vomiting, decreased neutrophil counts, and increased total bilirubin levels. The frequency of adverse events and drug-related adverse events was similar among the treatment groups. The systemic exposure was approximately dose proportional over the range of 50 mg to 800 mg, which includes the anticipated clinical dose. The mean clearance, renal clearance, and volume of distribution were significantly decreased at higher doses (above 800 mg). LCB01-0371 exhibited early bacteriostatic activity against all tested strains except for Streptococcus pneumoniae strains, and the potency of LCB01-0371 at 800 mg was similar to that of linezolid at the therapeutic dose (600 mg). However, LCB01-0371 had less bactericidal activity than linezolid. Taken together, LCB01-0371 was well tolerated, exhibited approximate dose proportionality within the anticipated clinically relevant dose range, and showed bacteriostatic and bactericidal activity comparable to that of linezolid. These results support the further clinical development of LCB01-0371. (This study has been registered at ClinicalTrials.gov under registration no. NCT01554995.).


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Oxazolidinones/adverse effects , Oxazolidinones/pharmacokinetics , Adult , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Healthy Volunteers , Humans , Linezolid/pharmacology , Male , Microbial Sensitivity Tests , Oxazolidinones/pharmacology , Young Adult
10.
J Korean Med Sci ; 33(41): e258, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30288156

ABSTRACT

BACKGROUND: In type 2 diabetes mellitus therapy, fixed-dose combination (FDC) can offer not only benefits in glucose control via the combined use of agents, but also increase patient compliance. The aim of this study was to assess the pharmacokinetic equivalence of the high dose of the FDC tablet (gemigliptin/metformin sustained release [SR] 50/1,000 mg) and a corresponding co-administered dose of individual tablets. METHODS: This study was randomized, open-label, single dose, two treatments, two-period, crossover study, which included 24 healthy subjects. Subjects received the FDC or individual tablets of gemigliptin (50 mg) and metformin XR (1,000 mg) in each period. Geometric mean ratios (GMRs) and 90% confidence intervals (CIs) of maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to the time of the last quantifiable concentration (AUClast) of the FDC tablet and co-administration of individual tablet for both gemigliptin and metformin were calculated. RESULTS: The GMRs (FDC tablets/co-administration; 90% CIs) for Cmax and AUClast of gemigliptin were 1.079 (0.986-1.180) and 1.047 (1.014-1.080), respectively. For metformin, the GMRs for Cmax, and AUClast were 1.038 (0.995-1.083) and 1.041 (0.997-1.088), respectively. The 90% CIs for GMRs of Cmax and AUClast for gemigliptin and metformin fell entirely within bounds of 0.800-1.250. Both administration of FDC tablet and co-administration of individual tablets were well tolerated. CONCLUSION: FDC tablet exhibited pharmacokinetic equivalence and comparable safety and tolerability to co-administration of corresponding doses of gemigliptin and metformin XR as individual tablets. Trial registry at ClinicalTrials.gov, NCT02056600.


Subject(s)
Delayed-Action Preparations/pharmacokinetics , Metformin/administration & dosage , Metformin/pharmacokinetics , Piperidones/administration & dosage , Piperidones/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Adult , Area Under Curve , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Drug Administration Schedule , Drug Combinations , Healthy Volunteers , Humans , Male , Middle Aged , Patient Safety , Tablets , Young Adult
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 514-21, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24531485

ABSTRACT

Murine protein serine/threonine kinase 38 (MPK38) is the murine orthologue of human maternal embryonic leucine-zipper kinase (MELK), which belongs to the SNF1/AMPK family. MELK is considered to be a promising drug target for anticancer therapy because overexpression and hyperactivation of MELK is correlated with several human cancers. Activation of MPK38 requires the extended sequence (ExS) containing the ubiquitin-associated (UBA) linker and UBA domain and phosphorylation of the activation loop. However, the activation mechanism of MPK38 is unknown. This paper reports the crystal structure of MPK38 (T167E), which mimics a phosphorylated state of the activation loop, in complex with AMP-PNP. In the MPK38 structure, the UBA linker forces an inward movement of the αC helix. Phosphorylation of the activation loop then induces movement of the activation loop towards the C-lobe and results in interlobar cleft closure. These processes generate a fully active state of MPK38. This structure suggests that MPK38 has a similar molecular mechanism regulating activation as in other kinases of the SNF1/AMPK family.


Subject(s)
Adenylyl Imidodiphosphate/chemistry , Protein Serine-Threonine Kinases/chemistry , Ubiquitin/chemistry , Animals , Crystallography, X-Ray , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Mice , Models, Molecular , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Ubiquitin/genetics
12.
Biochem Biophys Res Commun ; 447(1): 7-11, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24657156

ABSTRACT

Murine protein serine/threonine kinase 38 (MPK38), also known as maternal embryonic leucine zipper kinase (MELK), has been associated with various human cancers and plays an important role in the formation of cancer stem cells. OTSSP167, a MELK selective inhibitor, exhibits a strong in vitro activity, conferring an IC50 of 0.41nM and in vivo effect on various human cancer xenograft models. Here, we report the crystal structure of MPK38 (T167E), an active mutant, in complex with OTSSP167 and describe its detailed protein-inhibitor interactions. Comparison with the previous determined structure of MELK bound to the nanomolar inhibitors shows that OTSSP167 effectively fits into the active site, thus offering an opportunity for structure-based development and optimization of MELK inhibitors.


Subject(s)
Naphthyridines/chemistry , Protein Serine-Threonine Kinases/chemistry , Animals , Crystallography, X-Ray , Mice , Models, Molecular , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
13.
Transl Clin Pharmacol ; 32(2): 98-106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974342

ABSTRACT

Tegoprazan orally disintegrating tablet (ODT) formulation is a novel formulation to improve a convenience in comparison to taking the conventional tablet of tegoprazan, a potassium-competitive acid blocker. The purpose of this study was to evaluate the pharmacokinetic and safety profiles of tegoprazan ODT when administered via two routes: nasogastric tube or oral dosing. This study is expected to expand the administration route of tegoprazan ODT. The study was conducted in an open-label, randomized, single-dose, two-way crossover design with a 1-week washout period. Healthy subjects aged 19 to 45 years were administered 50 mg of tegoprazan ODT orally or dissolved in water via nasogastric tube. Tegoprazan, the active ingredient, was quantified using a ultra-high performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS), and pharmacokinetic parameters were determined through non-compartmental analysis. Safety was monitored throughout the study. A total of 48 subjects, successfully completed the trial. The geometric mean ratios for log-transformed Cmax and AUCt, representing the ratio of nasogastric tube group to oral dosing group, along with 90% confidence intervals, were 1.1087 (1.0243-1.2000) and 1.0023 (0.9620-1.0442), respectively. All adverse events were unrelated to tegoprazan and mild in intensity. The pharmacokinetic profiles of tegoprazan ODT were equivalent between the nasogastric tube and oral administration. Considering the demonstrated linear pharmacokinetics and concentration-dependent pharmacodynamics of tegoprazan, the administration via nasogastric tube is expected to yield effects equivalent to those of oral administration. This approach offers a viable alternative, especially beneficial for patients with oral intake difficulties.

14.
Int J Antimicrob Agents ; 63(2): 107034, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977236

ABSTRACT

BACKGROUND: Rifampicin (RIF) exhibits high pharmacokinetic (PK) variability among individuals; a low plasma concentration might result in unfavorable treatment outcomes and drug resistance. This study evaluated the contributions of non- and genetic factors to the interindividual variability of RIF exposure, then suggested initial doses for patients with different weight bands. METHODS: This multicenter prospective cohort study in Korea analyzed demographic and clinical data, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) genotypes, and RIF concentrations. Population PK modeling and simulations were conducted using nonlinear mixed-effect modeling. RESULTS: In total, 879 tuberculosis (TB) patients were divided into a training dataset (510 patients) and a test dataset (359 patients). A one-compartment model with allometric scaling for effect of body size best described the RIF PKs. The apparent clearance (CL/F) was 16.6% higher among patients in the SLCO1B1 rs4149056 wild-type group than among patients in variant group, significantly decreasing RIF exposure in the wild-type group. The developed model showed better predictive performance compared with previously reported models. We also suggested that patients with body weights of <40 kg, 40-55 kg, 55-70 kg, and >70 kg patients receive RIF doses of 450, 600, 750, and 1050 mg/day, respectively. CONCLUSIONS: Total body weight and SLCO1B1 rs4149056 genotypes were the most significant covariates that affected RIF CL/F variability in Korean TB patients. We suggest initial doses of RIF based on World Health Organization weight-band classifications. The model may be implemented in treatment monitoring for TB patients.


Subject(s)
Rifampin , Tuberculosis , Humans , Rifampin/pharmacokinetics , Prospective Studies , Tuberculosis/drug therapy , Polymorphism, Genetic , Liver-Specific Organic Anion Transporter 1/genetics
15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111350

ABSTRACT

Although the functional roles of M1 and M2 macrophages in the immune response and drug resistance are important, the expression and role of cytochrome P450s (CYPs) in these cells remain largely unknown. Differential expression of the 12 most common CYPs (CYP1A1, 1A2, 1B1, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5) were screened in THP-1-cell-derived M1 and M2 macrophages using reverse transcription PCR. CYP2C19 was highly expressed in THP-1-cell-derived M2 macrophages, but it was negligibly expressed in THP-1-cell-derived M1 macrophages at the mRNA and protein levels as analyzed by reverse transcription quantitative PCR and Western blot, respectively. CYP2C19 enzyme activity was also very high in THP-1-cell-derived M2 compared to M1 macrophages (> 99%, p < 0.01), which was verified using inhibitors of CYP2C19 activity. Endogenous levels of the CYP2C19 metabolites 11,12-epoxyeicosatrienoic acid (11,12-EET) and 14,15-EET were reduced by 40% and 50% in cells treated with the CYP2C19 inhibitor and by 50% and 60% in the culture medium, respectively. Both 11,12-EET and 14,15-EET were identified as PPARγ agonists in an in vitro assay. When THP-1-cell-derived M2 cells were treated with CYP2C19 inhibitors, 11,12- and 14,15-EETs were significantly reduced, and in parallel with the reduction of these CYP2C19 metabolites, the expression of M2 cell marker genes was also significantly decreased (p < 0.01). Therefore, it was suggested that CYP2C19 may contribute to M2 cell polarization by producing PPARγ agonists. Further studies are needed to understand the endogenous role of CYP2C19 in M2 macrophages with respect to immunologic function and cell polarization.

16.
Biomed Pharmacother ; 158: 114187, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916440

ABSTRACT

In this study, we investigated the lipidome of tuberculosis patients during standard chemotherapy to discover biosignatures that could aid therapeutic monitoring. UPLC-QToF MS was used to analyze 82 baseline and treatment plasma samples of patients with pulmonary tuberculosis. Subsequently, a data-driven and knowledge-based workflow, including robust annotation, statistical analysis, and functional analysis, was applied to assess lipid profiles during treatment. Overall, the lipids species from 17 lipid subclasses were significantly altered by anti-tuberculosis chemotherapy. Cholesterol ester (CE), monoacylglycerols, and phosphatidylcholine (PC) were upregulated, whereas triacylglycerols, sphingomyelin, and ether-linked phosphatidylethanolamines (PE O-) were downregulated. Notably, PCs demonstrated a clear upward expression pattern during tuberculosis treatment. Several lipid species were identified as potential biomarkers for therapeutic monitoring, such as PC(42:6), PE(O-40:5), CE(24:6), and dihexosylceramide Hex2Cer(34:2;2 O). Functional and lipid gene enrichment analysis revealed alterations in pathways related to lipid metabolism and host immune responses. In conclusion, this study provides a foundation for the use of lipids as biomarkers for clinical management of tuberculosis.


Subject(s)
Cholesterol Esters , Lipid Metabolism , Humans , Triglycerides , Phosphatidylcholines , Biomarkers
17.
Front Cell Infect Microbiol ; 13: 1108155, 2023.
Article in English | MEDLINE | ID: mdl-36844400

ABSTRACT

While early and precise diagnosis is the key to eliminating tuberculosis (TB), conventional methods using culture conversion or sputum smear microscopy have failed to meet demand. This is especially true in high-epidemic developing countries and during pandemic-associated social restrictions. Suboptimal biomarkers have restricted the improvement of TB management and eradication strategies. Therefore, the research and development of new affordable and accessible methods are required. Following the emergence of many high-throughput quantification TB studies, immunomics has the advantages of directly targeting responsive immune molecules and significantly simplifying workloads. In particular, immune profiling has been demonstrated to be a versatile tool that potentially unlocks many options for application in TB management. Herein, we review the current approaches for TB control with regard to the potentials and limitations of immunomics. Multiple directions are also proposed to hopefully unleash immunomics' potential in TB research, not least in revealing representative immune biomarkers to correctly diagnose TB. The immune profiles of patients can be valuable covariates for model-informed precision dosing-based treatment monitoring, prediction of outcome, and the optimal dose prediction of anti-TB drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Precision Medicine , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Antitubercular Agents/therapeutic use , Biomarkers , Sputum
18.
Drug Des Devel Ther ; 17: 1107-1114, 2023.
Article in English | MEDLINE | ID: mdl-37077410

ABSTRACT

Purpose: The combined administration of bazedoxifene, a tissue-selective estrogen receptor modulator, and cholecalciferol can be a promising therapeutic option for postmenopausal osteoporosis patients. This study aimed to examine the pharmacokinetic interactions between these two drugs and the tolerability of their combined administration in healthy male subjects. Patients and Methods: Thirty male volunteers were randomly assigned to one of the six sequences comprised of three treatments: bazedoxifene 20 mg monotherapy, cholecalciferol 1600 IU monotherapy, and combined bazedoxifene and cholecalciferol therapy. For each treatment, a single dose of the investigational drug(s) was administered orally, and serial blood samples were collected to measure the plasma concentrations of bazedoxifene and cholecalciferol. Pharmacokinetic parameters were calculated using the non-compartmental method. The point estimate and 90% confidence interval (CI) of the geometric mean ratio (GMR) were obtained to compare the exposures of combined therapy and monotherapy. The pharmacokinetic parameters compared were the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time zero to the last quantifiable concentration (AUClast). The safety and tolerability of the combined therapy were assessed in terms of the frequency and severity of adverse events (AEs). Results: For bazedoxifene, the GMR (90% CI) of the combined therapy to monotherapy was 1.044 (0.9263-1.1765) for Cmax and 1.1329 (1.0232-1.2544) for AUClast. For baseline-adjusted cholecalciferol, the GMR (90% CI) of the combined therapy to monotherapy was 0.8543 (0.8005-0.9117) for Cmax and 0.8056 (0.7445-0.8717) for AUClast. The frequency of AEs observed was not significantly different between the combined therapy and monotherapy, and their severity was mild in all cases. Conclusion: A mild degree of pharmacokinetic interaction was observed when bazedoxifene and cholecalciferol were administered concomitantly to healthy male volunteers. This combined therapy was well tolerated at the dose levels used in the present study.


Subject(s)
Cholecalciferol , Volunteers , Humans , Male , Cross-Over Studies , Cholecalciferol/adverse effects , Therapeutic Equivalency , Healthy Volunteers , Area Under Curve , Administration, Oral
19.
Front Pharmacol ; 14: 1116226, 2023.
Article in English | MEDLINE | ID: mdl-37305528

ABSTRACT

Objectives: This study was performed to develop a population pharmacokinetic model of pyrazinamide for Korean tuberculosis (TB) patients and to explore and identify the influence of demographic and clinical factors, especially geriatric diabetes mellitus (DM), on the pharmacokinetics (PK) of pyrazinamide (PZA). Methods: PZA concentrations at random post-dose points, demographic characteristics, and clinical information were collected in a multicenter prospective TB cohort study from 18 hospitals in Korea. Data obtained from 610 TB patients were divided into training and test datasets at a 4:1 ratio. A population PK model was developed using a nonlinear mixed-effects method. Results: A one-compartment model with allometric scaling for body size effect adequately described the PK of PZA. Geriatric patients with DM (age >70 years) were identified as a significant covariate, increasing the apparent clearance of PZA by 30% (geriatric patients with DM: 5.73 L/h; others: 4.50 L/h), thereby decreasing the area under the concentration-time curve from 0 to 24 h by a similar degree compared with other patients (geriatric patients with DM: 99.87 µg h/mL; others: 132.3 µg h/mL). Our model was externally evaluated using the test set and provided better predictive performance compared with the previously published model. Conclusion: The established population PK model sufficiently described the PK of PZA in Korean TB patients. Our model will be useful in therapeutic drug monitoring to provide dose optimization of PZA, particularly for geriatric patients with DM and TB.

20.
Front Immunol ; 14: 1210372, 2023.
Article in English | MEDLINE | ID: mdl-38022579

ABSTRACT

Background: The optimal diagnosis and treatment of tuberculosis (TB) are challenging due to underdiagnosis and inadequate treatment monitoring. Lipid-related genes are crucial components of the host immune response in TB. However, their dynamic expression and potential usefulness for monitoring response to anti-TB treatment are unclear. Methodology: In the present study, we used a targeted, knowledge-based approach to investigate the expression of lipid-related genes during anti-TB treatment and their potential use as biomarkers of treatment response. Results and discussion: The expression levels of 10 genes (ARPC5, ACSL4, PLD4, LIPA, CHMP2B, RAB5A, GABARAPL2, PLA2G4A, MBOAT2, and MBOAT1) were significantly altered during standard anti-TB treatment. We evaluated the potential usefulness of this 10-lipid-gene signature for TB diagnosis and treatment monitoring in various clinical scenarios across multiple populations. We also compared this signature with other transcriptomic signatures. The 10-lipid-gene signature could distinguish patients with TB from those with latent tuberculosis infection and non-TB controls (area under the receiver operating characteristic curve > 0.7 for most cases); it could also be useful for monitoring response to anti-TB treatment. Although the performance of the new signature was not better than that of previous signatures (i.e., RISK6, Sambarey10, Long10), our results suggest the usefulness of metabolism-centric biomarkers. Conclusions: Lipid-related genes play significant roles in TB pathophysiology and host immune responses. Furthermore, transcriptomic signatures related to the immune response and lipid-related gene may be useful for TB diagnosis and treatment monitoring.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/genetics , Biomarkers/metabolism , Immunity , Lipids/therapeutic use , Acetyltransferases , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL