Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
RSC Adv ; 13(45): 31480-31486, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37901265

ABSTRACT

Capacitive deionization (CDI) is an electrochemical-based water treatment technology that has attracted attention as an effective hardness-control process. However, few systematic studies have reported the criteria for the selection of suitable electrode materials for membrane capacitive deionization (MCDI) to control hardness. In this study, the effect of electrode material characteristics on the MCDI performance for hardness control was quantitatively analyzed. The results showed that the deionization capacity and the deionization rate were affected by the specific capacitance and BET-specific surface area of the activated carbon electrode. In addition, the deionization rate also showed significant relationship with the BET specific surface area. Furthermore, it was observed that the deionization capacity and the deionization rate have a highly significant relationship with the BET specific surface area divided by the wettability performance expressed as the minimum wetting rate (MWR). These findings highlighted that the electrode material should have a large surface area and good wettability to increase the deionization capacity and the deionization rate of MCDI for hardness control. The results of this study are expected to provide effective criteria for selecting MCDI electrode materials aiming hardness control.

2.
Environ Sci Technol ; 46(20): 11021-7, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22963502

ABSTRACT

Membrane fouling remains a critical factor limiting the widespread use of membrane processes in water and wastewater treatment. To mitigate membrane fouling, we introduced a patterned morphology on the membrane surface using a lithographic method. A modified immersion precipitation method was developed to relieve the formation of dense layer at the solvent-nonsolvent interface, that is, the opposite side of the patterned surface. Diverse patterned membranes, such as pyramid-, prism-, and embossing-patterned membranes, were prepared and compared with a flat membrane in terms of morphology, permeability, and biofouling. Patterned membrane fidelity was largely dependent on the polymer concentration in cast solution. The patterned surface augmented the water flux in proportion to the roughness factor of the patterned membrane. However, the type of pattern did not affect substantially the mean pore size on the patterned surface. Deposition of microbial cells on the patterned membrane was significantly reduced compared to that on the flat membrane in the membrane bioreactor (MBR) for wastewater treatment. This was attributed to hydraulic resistance of the apex of the patterned surface, which induced local turbulence.


Subject(s)
Filtration/instrumentation , Membranes, Artificial , Waste Disposal, Fluid/methods , Water Purification/methods , Biofouling , Bioreactors , Permeability , Polymers/chemistry , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 45(4): 1601-7, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21204565

ABSTRACT

Recently, enzymatic quorum quenching (in the form of a free enzyme or an immobilized form on a bead) was successfully applied to a submerged membrane bioreactor with a microfiltration membrane for wastewater treatment as a novel approach to control membrane biofouling. In this study, a quorum quenching enzyme (acylase) was directly immobilized onto a nanofiltration membrane to mitigate biofouling in a nanofiltration process. In a flow cell experiment, the acylase-immobilized membrane with quorum quenching activity prohibited the formation of mushroom-shaped mature biofilm due to the reduced secretion of extracellular polymeric substances (EPS). The acylase-immobilized membrane maintained more than 90% of its initial enzyme activity for more than 20 iterative cycles of reaction and washing procedure. In the lab-scale continuous crossflow nanofiltration system operated at a constant pressure of 2 bar, the flux with the acylase-immobilized nanofiltration (NF) membrane was maintained at more than 90% of its initial flux after a 38-h operation, whereas that with the raw NF membrane decreased to 60% accompanied with severe biofouling. The quorum quenching activity of the acylase-immobilized membrane was also confirmed by visualizing the spatial distribution of cells and polysaccharides on the surface of each membrane using confocal laser scanning microscopy (CLSM) image analysis technique.


Subject(s)
Biofouling , Membranes, Artificial , Nanoparticles , Biofilms , Bioreactors , Enzymes, Immobilized , Filtration , Pressure , Quorum Sensing
4.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34356311

ABSTRACT

Thirteen (Z)-2-(substituted benzylidene)benzimidazothiazolone analogs were synthesized and evaluated for their inhibitory activity against mushroom tyrosinase. Among the compounds synthesized, compounds 1-3 showed greater inhibitory activity than kojic acid (IC50 = 18.27 ± 0.89 µM); IC50 = 3.70 ± 0.51 µM for 1; IC50 = 3.05 ± 0.95 µM for 2; and IC50 = 5.00 ± 0.38 µM for 3, and found to be competitive tyrosinase inhibitors. In silico molecular docking simulations demonstrated that compounds 1-3 could bind to the catalytic sites of tyrosinase. Compounds 1-3 inhibited melanin production and cellular tyrosinase activity in a concentration-dependent manner. Notably, compound 2 dose-dependently scavenged ROS in B16F10 cells. Furthermore, compound 2 downregulated the protein kinase A (PKA)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling pathways, which led to a reduction in microphthalmia-associated transcription factor (MITF) expression, and decreased tyrosinase, tyrosinase related protein 1 (TRP1), and TRP2 expression, resulting in anti-melanogenesis activity. Hence, compound 2 may serve as an anti-melanogenic agent against hyperpigmentation diseases.

SELECTION OF CITATIONS
SEARCH DETAIL