Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biomed Microdevices ; 25(4): 41, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37870619

ABSTRACT

Reliability evaluation results of a manufacturable 32-channel cochlear electrode array are reported in this paper. Applying automated laser micro-machining process and a layer-by-layer silicone deposition scheme, authors developed the manufacturing methods of the electrode array for fine patterning and mass production. The developed electrode array has been verified through the requirements specified by the ISO Standard 14708-7. And the insertion trauma of the electrode array has been evaluated based on human temporal bone studies. According to the specified requirements, the electrode array was assessed through elongation & insulation, flexural, and fatigue tests. In addition, Temporal bone study was performed using eight fresh-frozen cadaver temporal bones with the electrode arrays inserted via the round window. Following soaking in saline condition, the impedances between conducting wires of the electrode array were measured over 100 kΩ (the pass/fail criterion). After each required test, it was shown that the electrode array maintained the electrical continuity and insulation condition. The average insertion angle of the electrode array inside the scala tympani was 399.7°. The human temporal bone studies exhibited atraumatic insertion rate of 60.3% (grade 0 or 1). The reliability of the manufacturable electrode array is successfully verified in mechanical, electrical, and histological aspects. Following the completion of a 32-channel cochlear implant system, the performance and stability of the 32-channel electrode array will be evaluated in clinical trials.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Reproducibility of Results , Scala Tympani/surgery , Round Window, Ear , Temporal Bone/surgery , Cochlea/surgery , Electrodes, Implanted
2.
ACS Appl Mater Interfaces ; 16(28): 36204-36214, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38973635

ABSTRACT

Although the Li metal has been gaining attention as a promising anode material for the next-generation high-energy-density rechargeable batteries owing to its high theoretical specific capacity (3860 mAh g-1), its practical use remains challenging owing to inherent issues related to Li nucleation and growth. This paper reports the fabrication of a lithiophilic multichannel layer (LML) that enables the simultaneous control of Li nucleation and growth in Li-metal batteries. The LML, composed of lithiophilic ceramic composite nanoparticles (Ag-plated Al2O3 particles), is fabricated using the electroless plating method. This LML provides numerous channels for a uniform Li-ion diffusion on a nonwoven separator. Furthermore, the lithiophilic Ag on the Li metal anode surface facing the LML induces a low overpotential during Li nucleation, resulting in a dense Li deposition. The LML enables the LiNi0.8Co0.1Mn0.1O2|| Li cells to maintain a capacity higher than 75% after 100 cycles, even at high charge/discharge rates of 5.0 C at a cutoff voltage of 4.4 V, and achieve an ultrahigh energy density of 1164 Wh kg-1. These results demonstrate that the LML is a promising solution enabling the application of Li metal as an anode material in the next-generation Li-ion batteries.

3.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209329

ABSTRACT

(1) Background: In this study, we introduce a manufacturable 32-channel cochlear electrode array. In contrast to conventional cochlear electrode arrays manufactured by manual processes that consist of electrode-wire welding, the placement of each electrode, and silicone molding over wired structures, the proposed cochlear electrode array is manufactured by semi-automated laser micro-structuring and a mass-produced layer-by-layer silicone deposition scheme similar to the semiconductor fabrication process. (2) Methods: The proposed 32-channel electrode array has 32 electrode contacts with a length of 24 mm and 0.75 mm spacing between contacts. The width of the electrode array is 0.45 mm at its apex and 0.8 mm at its base, and it has a three-layered arrangement consisting of a 32-channel electrode layer and two 16-lead wire layers. To assess its feasibility, we conducted an electrochemical evaluation, stiffness measurements, and insertion force measurements. (3) Results: The electrochemical impedance and charge storage capacity are 3.11 ± 0.89 kOhm at 1 kHz and 5.09 mC/cm2, respectively. The V/H ratio, which indicates how large the vertical stiffness is compared to the horizontal stiffness, is 1.26. The insertion force is 17.4 mN at 8 mm from the round window, and the maximum extraction force is 61.4 mN. (4) Conclusions: The results of the preliminary feasibility assessment of the proposed 32-channel cochlear electrode array are presented. After further assessments are performed, a 32-channel cochlear implant system consisting of the proposed 32-channel electrode array, 32-channel neural stimulation and recording IC, titanium-based hermetic package, and sound processor with wireless power and signal transmission coil will be completed.

4.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209448

ABSTRACT

A number of research attempts to understand and modulate sensory and motor skills that are beyond the capability of humans have been underway. They have mainly been expounded in rodent models, where numerous reports of controlling movement to reach target locations by brain stimulation have been achieved. However, in the case of birds, although basic research on movement control has been conducted, the brain nuclei that are triggering these movements have yet to be established. In order to fully control flight navigation in birds, the basic central nervous system involved in flight behavior should be understood comprehensively, and functional maps of the birds' brains to study the possibility of flight control need to be clarified. Here, we established a stable stereotactic surgery to implant multi-wire electrode arrays and electrically stimulated several nuclei of the pigeon's brain. A multi-channel electrode array and a wireless stimulation system were implanted in thirteen pigeons. The pigeons' flight trajectories on electrical stimulation of the cerebral nuclei were monitored and analyzed by a 3D motion tracking program to evaluate the behavioral change, and the exact stimulation site in the brain was confirmed by the postmortem histological examination. Among them, five pigeons were able to induce right and left body turns by stimulating the nuclei of the tractus occipito-mesencephalicus (OM), nucleus taeniae (TN), or nucleus rotundus (RT); the nuclei of tractus septo-mesencephalicus (TSM) or archistriatum ventrale (AV) were stimulated to induce flight aviation for flapping and take-off with five pigeons.

SELECTION OF CITATIONS
SEARCH DETAIL