Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 146(27): 18626-18638, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38918178

ABSTRACT

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.


Subject(s)
Cyanobacteria , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Cyanobacteria/genetics , Humans , Multigene Family , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
2.
J Nat Prod ; 87(4): 1230-1234, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
3.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339681

ABSTRACT

Gait event detection is essential for controlling an orthosis and assessing the patient's gait. In this study, patients wearing an electromechanical (EM) knee-ankle-foot orthosis (KAFO) with a single IMU embedded in the thigh were subjected to gait event detection. The algorithm detected four essential gait events (initial contact (IC), toe off (TO), opposite initial contact (OIC), and opposite toe off (OTO)) and determined important temporal gait parameters such as stance/swing time, symmetry, and single/double limb support. These gait events were evaluated through gait experiments using four force plates on healthy adults and a hemiplegic patient who wore a one-way clutch KAFO and a pneumatic cylinder KAFO. Results showed that the smallest error in gait event detection was found at IC, and the largest error rate was observed at opposite toe off (OTO) with an error rate of -2.8 ± 1.5% in the patient group. Errors in OTO detection resulted in the largest error in determining the single limb support of the patient with an error of 5.0 ± 1.5%. The present study would be beneficial for the real-time continuous monitoring of gait events and temporal gait parameters for persons with an EM KAFO.


Subject(s)
Ankle , Foot Orthoses , Adult , Humans , Gait , Orthotic Devices , Ankle Joint , Thigh , Biomechanical Phenomena , Walking
4.
J Org Chem ; 87(2): 1043-1055, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34967649

ABSTRACT

Luquilloamides A-G (1-7) were isolated from a small environmental collection of a marine cyanobacterium found growing on eelgrass (Zostera sp.) near Luquillo, Puerto Rico. Structure elucidation of the luquilloamides was accomplished via detailed NMR and MS analyses, and absolute configurations were determined using a combination of advanced Mosher's method, J-based configuration analysis, semisynthetic fragment analysis derived from ozonolysis, methylation, Baeyer-Villiger oxidation, Mosher's esterification, specific rotations, and ECD data. Except for 2, the luquilloamides share a characteristic tert-butyl-containing polyketide fragment, ß-alanine, and a proposed highly modified polyketide extension. While compound 1 is a linear lipopeptide with two α-methyl branches and a vinyl chloride functionality in the polyketide portion, compounds 4, 6, and 7 possess a cyclohexanone structure with methylation on the α- or ß-positions of the polyketide as well as an acetyl group. Interestingly, the absolute configuration at C-5 and C-6 on the cyclohexanone unit in 7 is opposite to that of 4-6. Compound 3 was revealed to have a tert-butyl-containing polyketide, ß-alanine, and a PKS/NRPS-derived γ-isopropyl pyrrolinone. Compound 2 may be a hydrolysis product of 3. Of the seven new compounds, 1 showed the most potent cytotoxicity to human H-460 lung cancer cells.


Subject(s)
Lipopeptides/pharmacology , Oscillatoria , Cell Line, Tumor , Humans , Marine Biology , Molecular Structure , Oscillatoria/chemistry , Puerto Rico
5.
J Nat Prod ; 85(10): 2445-2453, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36197044

ABSTRACT

A new secondary metabolite, ulleungdolin (1), was isolated from the co-culture of an actinomycete, Streptomyces sp. 13F051, and a fungus, Leohumicola minima 15S071. Based on the NMR, UV, and MS data, it was deduced that the planar structure of 1 comprised an isoindolinone (IsoID) with an octanoic acid, a tripeptide, and a sugar. The tripeptide has the unprecedented amino acids norcoronamic acid, 3-hydroxy-glutamine, and 4-hydroxy-phenylglycine and is linked by a C-N bond with IsoID. The absolute configurations were determined by chemical derivatization, extensive spectroscopic methods, and electronic circular dichroism calculations and supported by bioinformatic analyses. Bioactivity evaluation studies indicated that 1 had an antimigration effect on MDA-MB-231 breast cancer cells.


Subject(s)
Ascomycota , Polyketides , Streptomyces , Streptomyces/chemistry , Polyketides/pharmacology , Polyketides/chemistry , Coculture Techniques , Molecular Structure , Peptides
6.
J Nat Prod ; 84(8): 2226-2237, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34378933

ABSTRACT

Fourteen azaphilone-type polyketides (1-14), including nine new ones (1-6 and 8-10), were isolated from cultures of Vitex rotundifolia-associated Penicillium sp. JVF17, and their structures were determined by spectroscopic analysis together with computational methods and chemical reactions. Neuroprotective effects of the isolated compounds were evaluated against glutamate-induced neurotoxicity. Treatment with compounds 3, 6, 7, and 11-14 increased cell viabilities of hippocampal neuronal cells damaged by glutamate, with compound 12 being the most potent. Compound 12 markedly decreased intracellular Ca2+ and nuclear condensation levels. Mechanistically, molecular markers of apoptosis induced by treatment with glutamate, i.e., phosphorylation of MAPKs and elevated Bax/Bcl-2 expression ratio, were significantly lowered by compound 12. The azaphilones with an isoquinoline core structure were more active than those with pyranoquinones, but N-substitution decreased the activity. This study, including the structure-activity relationship, indicates that the azaphilone scaffold is a promising lead toward the development of novel neuroprotective agents.


Subject(s)
Benzopyrans/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Penicillium/chemistry , Pigments, Biological/pharmacology , Polyketides/pharmacology , Animals , Apoptosis/drug effects , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Hippocampus/cytology , Mice , Mitogen-Activated Protein Kinases , Molecular Structure , Proto-Oncogene Proteins c-bcl-2 , Republic of Korea , Structure-Activity Relationship , Vitex/microbiology , bcl-2-Associated X Protein
7.
J Nat Prod ; 84(8): 2249-2255, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34387477

ABSTRACT

Acremonamide (1) was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was established using MS, UV, and NMR spectroscopic data analyses. Acremonamide (1) was found to contain N-Me-Phe, N-Me-Ala, Val, Phe, and 2-hydroxyisovaleric acid. The absolute configurations of the four aforementioned amino acids were determined through acid hydrolysis followed by the advanced Marfey's method, whereas the absolute configuration of 2-hydroxyisovaleric acid was determined through GC-MS analysis after formation of the O-pentafluoropropionylated derivative of the (-)-menthyl ester of 2-hydroxyisovaleric acid. As an intrinsic biological activity, acremonamide (1) did not exert cytotoxicity to cancer and noncancer cells and increased the migration and invasion. Based on these activities, the wound healing properties of acremonamide (1) were confirmed in vitro and in vivo.


Subject(s)
Acremonium/chemistry , Peptides, Cyclic/pharmacology , Wound Healing/drug effects , Animals , Aquatic Organisms/chemistry , Caco-2 Cells , HaCaT Cells , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Structure , NIH 3T3 Cells , Peptides, Cyclic/isolation & purification
8.
Bioorg Chem ; 106: 104493, 2021 01.
Article in English | MEDLINE | ID: mdl-33268010

ABSTRACT

Suntamide A (1), a new cyclic peptide, was isolated from Cicadidae Periostracum. The gross structure of 1 was elucidated by detailed analysis of HRMS and 1D/2D NMR spectra, and the absolute configuration was established by C3 Marfey's method. We extended our study to examine biological activity of 1, and found that 1 protected SH-SY5Y cells against rotenone-induced neurotoxicity. This effect of 1 seemed to be attributed to antioxidant induction and protection of mitochondria from rotenone-caused injury. Along with augmentation of the antioxidant system by 1, there was an evident activation of Nrf2, a transcription factor involved in the activation of the antioxidant system. These results indicate that 1 rescued the cells from rotenone-mediated neurotoxicity by enhancing antioxidant capacity via induction of Nrf2, suggesting that the compound could be used as a therapeutic intervention in neurodegenerative diseases such as Parkinson's disease.


Subject(s)
Antioxidants/pharmacology , Hemiptera/chemistry , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Peptides, Cyclic/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Rotenone/antagonists & inhibitors , Rotenone/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Bioorg Chem ; 113: 105027, 2021 08.
Article in English | MEDLINE | ID: mdl-34098398

ABSTRACT

Psiguadial B (8), and its fluoro- (8a), chloro- (8b), and bromo- (8c) derivatives were synthesized using a sodium acetate-catalyzed single step coupling of three components: ß-caryophyllene (5), diformylphloroglucinol (11), and benzaldehyde (12). These compounds efficiently and dose-dependently decreased H2O2-induced cell death, a quantitative marker of cell death, in primary cultures of mouse cortical neurons. Psiguadial B also decreased neuronal death and accumulation of ROS induced by FeCl2 in cortical cultures. The in vitro effects of these compounds in lipopolysaccharide (LPS)-induced expression of nitric oxide (NO), and TNF-α and IL-6 by suppressing the NF-κB pathway in immune cells demonstrated their antioxidative and anti-inflammatory activity. The present findings warrant further research on the development of psiguadial B-based neuroprotective agents for the treatment of neurodegenerative diseases, acute brain injuries and immunological disorders.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Neuroprotective Agents/chemistry , Terpenes/chemistry , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Ferrous Compounds/pharmacology , Halogenation , Hydrogen Peroxide/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred ICR , NF-kappa B/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Psidium/chemistry , Psidium/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Mar Drugs ; 19(4)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920324

ABSTRACT

Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.


Subject(s)
Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Poaceae/metabolism , Uterus/drug effects , Animals , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/metabolism , Female , Humans , Ligands , MCF-7 Cells , Molecular Structure , Organ Size , Phytoestrogens/isolation & purification , Phytoestrogens/toxicity , Plant Components, Aerial/metabolism , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Roots/metabolism , Poaceae/growth & development , Rats, Sprague-Dawley , Structure-Activity Relationship , Uterus/growth & development , Uterus/metabolism
11.
Mar Drugs ; 19(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34436304

ABSTRACT

The epithelial-mesenchymal transition (EMT) of cancer cells is a crucial process in cancer cell metastasis. An Aquimarina sp. MC085 extract was found to inhibit A549 human lung cancer cell invasion, and caprolactin C (1), a new natural product, α-amino-ε-caprolactam linked to 3-methyl butanoic acid, was purified through bioactivity-guided isolation of the extract. Furthermore, its enantiomeric compound, ent-caprolactin C (2), was synthesized. Both 1 and 2 inhibited the invasion and γ-irradiation-induced migration of A549 cells. In transforming growth factor-ß (TGF-ß)-treated A549 cells, 2 inhibited the phosphorylation of Smad2/3 and suppressed the EMT cell marker proteins (N-cadherin, ß-catenin, and vimentin), as well as the related messenger ribonucleic acid expression (N-cadherin, matrix metalloproteinase-9, Snail, and vimentin), while compound 1 did not suppress Smad2/3 phosphorylation and the expression of EMT cell markers. Therefore, compound 2 could be a potential candidate for antimetastatic agent development, because it suppresses TGF-ß-induced EMT.


Subject(s)
Antineoplastic Agents/pharmacology , Caproates/pharmacology , Flavobacteriaceae/chemistry , Lactones/pharmacology , A549 Cells , Animals , Aquatic Organisms , Cell Line, Tumor/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans , Transforming Growth Factor beta/metabolism
12.
Mar Drugs ; 19(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34564183

ABSTRACT

Five new bicyclic carboxylic acids were obtained by antibacterial activity-guided isolation from a Korean colonial tunicate Didemnum sp. Their structures were elucidated by the interpretation of NMR, MS and CD spectroscopic data. They all belong to the class of aplidic acids. Three of them were amide derivatives (1-3), and the other two were dicarboxylic derivatives (4 and 5). The absolute configurations were determined by a bisignate pattern of CD spectroscopy, which revealed that the absolute configurations of amides were opposite to those of dicarboxylates at every stereogenic centers. Compound 2 exhibited the most potent antibacterial activity (MIC, 2 µg/mL).


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fatty Acids/chemistry , Fatty Acids/pharmacology , Urochordata/chemistry , Animals , Molecular Structure , Staphylococcus aureus/drug effects
13.
Phytochem Anal ; 32(6): 1067-1073, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33786911

ABSTRACT

INTRODUCTION: Quantitative nuclear magnetic resonance (qNMR) is one of the effective and reliable quantification tools for natural product research. Myelochroa leucotyliza belongs to the genus Myelochroa, a common foliose lichen genus found in the Korean Peninsula, and has not been quantitatively analysed using NMR. Previous chemical studies on M. leucotyliza have been limited to the main components by traditional thin-layer chromatography (TLC) experiments. OBJECTIVE: We explored the stability of atranorin, a major component of M. leucotyliza, in methanol and acetone using NMR and characterised the changes in the chemical profiles of the lichen extracts in methanol and acetone using qNMR. METHODOLOGY: Atranorin transformation in the presence of methanol was analysed using time-dependent proton (1 H)-NMR analysis (600 MHz NMR spectrometer). A 1 H qNMR (qHNMR) method was established using dimethyl sulfone as the internal standard for quantifying the selected components isolated from M. leucotyliza. Homogenous mixtures of the samples were dissolved in deuterated chloroform. RESULTS: Time-dependent 1 H-NMR experiments revealed that atranorin (5) from lichen M. leucotyliza decomposed into atraric acid (1) and methyl haemmatommate (2) in methanol. Four components were identified from M. leucotyliza: 1, 2, usnic acid (4), and 5, and their respective contents were determined using qHNMR. The percentages (w/w) of 1, 2, and 4 in the methanol extract were calculated as 5.66%, 0.69%, and 0.90%, while those of 1, 4, and 5 in the acetone extract were 1.70%, 1.68%, and 19.11%, respectively. CONCLUSION: We used qHNMR to effectively analyse quantitative compositional variations in two different M. leucotyliza extracts and reliably determined the chemical conversion of the unstable compound atranorin.


Subject(s)
Lichens , Chromatography, Thin Layer , Hydroxybenzoates , Parmeliaceae , Solvents
14.
J Asian Nat Prod Res ; 23(1): 55-72, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31888389

ABSTRACT

We examined the effects of a 2,2'-bipyridine containing natural product, collismycin C on high mobility group box 1 (HMGB1, septic mediator)-mediated septic responses and survival rate in a mouse sepsis model. Collismycin C inhibited the HMGB1 release and downregulated HMGB1-mediated inflammatory responses in human endothelial cells. Collismycin C also inhibited HMGB1-induced hyperpermeability and leukocyte migration in mice. In addition, collismycin C treatment reduced CLP-induced HMGB1 release and sepsis-related mortality and pulmonary damage in vivo. Our results indicate that collismycin C is a potential therapeutic agent for the treatment of severe vascular inflammatory diseases by inhibiting HMGB1 signaling pathway.


Subject(s)
HMGB1 Protein , Sepsis , 2,2'-Dipyridyl , Animals , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Molecular Structure , Sepsis/drug therapy , Survival Rate
15.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203232

ABSTRACT

Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens' metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Triterpenes , Usnea/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , HCT116 Cells , Humans , Triterpenes/chemistry , Triterpenes/pharmacology
16.
Molecules ; 26(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801065

ABSTRACT

Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7ß-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (4-14). The structures were elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and optical rotation data. Compounds (1-3, 5-14) were evaluated for their protective effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by 1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively.


Subject(s)
Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes, Eudesmane , Adipose Tissue/cytology , Alpinia , Animals , Male , Mesenchymal Stem Cells/cytology , Mice , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Sesquiterpenes, Eudesmane/chemistry , Sesquiterpenes, Eudesmane/pharmacology
17.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946633

ABSTRACT

Lentil (Lens culinaris; Fabaceae), one of the major pulse crops in the world, is an important source of proteins, prebiotics, lipids, and essential minerals as well as functional components such as flavonoids, polyphenols, and phenolic acids. To improve crop nutritional and medicinal traits, hybridization and mutation are widely used in plant breeding research. In this study, mutant lentil populations were generated by γ-irradiation for the development of new cultivars by inducing genetic diversity. Molecular networking via Global Natural Product Social Molecular Networking web platform and dipeptidyl peptide-IV inhibitor screening assay were utilized as tools for structure-based discovery of active components in active mutant lines selected among the lentil population. The bioactivity-based molecular networking analysis resulted in the annotation of the molecular class of phosphatidylcholine (PC) from the most active mutant line. Among PCs, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (18:0 Lyso PC) was selected for further in vivo study of anti-obesity effect in a high-fat diet (HFD)-induced obese mouse model. The administration of 18:0 Lyso PC not only prevented body weight gain and decreased relative gonadal adipose tissue weight, but also attenuated the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and leptin in the sera of HFD-induced obese mice. Additionally, 18:0 Lyso PC treatment inhibited the increase of adipocyte area and crown-like structures in adipose tissue. Therefore, these results suggest that 18:0 Lyso PC is a potential compound to have protective effects against obesity, improving obese phenotype induced by HFD.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Anti-Obesity Agents , Cholesterol, LDL/blood , Diet, High-Fat/adverse effects , Lens Plant , Obesity , Phosphatidylcholines , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Lens Plant/chemistry , Lens Plant/genetics , Male , Mice , Obesity/blood , Obesity/chemically induced , Obesity/drug therapy , Phosphatidylcholines/chemistry , Phosphatidylcholines/genetics , Phosphatidylcholines/pharmacology
18.
Bioorg Med Chem Lett ; 30(11): 127145, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32249119

ABSTRACT

Two new chlorinated secondary metabolites, saccharochlorines A and B (1 and 2), were isolated from the saline cultivation of a marine-derived bacterium Saccharomonospora sp. (KCTC-19160). The chemical structures of the saccharochlorines were elucidated by 2D NMR and MS spectroscopic data. Saccharochlorines A and B (1 and 2) exhibit weak inhibition of ß-secretase (BACE1) in biochemical inhibitory assay, but they induced the release of Aß (1-40) and Aß (1-42) in H4-APP neuroglial cells. This discrepancy might be derived from the differences between the cellular and sub-cellular environments or the epigenetic stimulation of BACE1 expression.


Subject(s)
Acrylates/chemistry , Actinobacteria/chemistry , Acrylates/isolation & purification , Acrylates/metabolism , Acrylates/pharmacology , Actinobacteria/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Conformation , Neuroglia/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Peptide Fragments/metabolism
19.
J Nat Prod ; 83(10): 3166-3172, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32985880

ABSTRACT

A cyclic tetrapeptide, androsamide (1), was isolated from a marine actinomycete of the genus Nocardiopsis, strain CNT-189. The planar structure of 1 was assigned by the interpretation of 1D and 2D NMR spectroscopic data. The absolute configurations of constituent amino acids of 1 were determined by application of the Marfey's and advanced Marfey's methods. Androsamide (1) strongly suppressed the motility of Caco2 cells caused by epithelial-mesenchymal transition.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Nocardiopsis/chemistry , Amino Acids/chemistry , Antibiotics, Antineoplastic/chemical synthesis , Caco-2 Cells , Cell Movement/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition/drug effects , Fermentation , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Neoplasm Invasiveness
20.
Bioorg Chem ; 105: 104434, 2020 12.
Article in English | MEDLINE | ID: mdl-33161250

ABSTRACT

Natural products with antioxidant and anti-inflammatory properties are important sources of therapeutic agents. The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is a well-known defense system against oxidative stress. In this study, a panel of extracts of plants, fungi, and bacteria were screened for Nrf2 activation in a cell-based assay and a crude extract of cultured marine Streptomyces sp. YP127 was found to activate Nrf2. Chemical investigation of the extracts led to isolation of a series of napyradiomycins that activate Nrf2. Among them, napyradiomycin, 16Z-19-hydroxynapyradiomycin A1 (1) exhibited the highest Nrf2-activating efficacy. Compound 1 was further confirmed to induce both mRNA and protein levels of Nrf2-dependent antioxidant enzyme genes in BV-2 microglial cells and suppress inflammatory mediators and intracellular reactive oxygen species. Our findings confirm the antioxidant and anti-inflammatory properties of compound 1, making it a promising therapeutic natural compound for various diseases associated with oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Streptomyces/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Naphthoquinones/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL