Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pharmacol Rev ; 76(1): 90-141, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37845080

ABSTRACT

Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Halogens/chemistry , Halogenation , Structure-Activity Relationship
2.
Mol Ther ; 31(3): 890-908, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36566348

ABSTRACT

Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proven to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasome suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasome activation.


Subject(s)
Colitis , Inflammasomes , Mesenchymal Stem Cells , Animals , Mice , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Mesenchymal Stem Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction , Cell Culture Techniques, Three Dimensional
3.
Mol Divers ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904907

ABSTRACT

Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx. Further, drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge were performed. The selected complex was forwarded for MD simulations up to 100ns. Based on free energy of binding obtained from docking revealed that ZINC14557836 and ZINC14638400 more potently inhibiting to 15-PGDH than SW033291 (the control and high-affinity inhibitor of 15-PGDH). The free energies of binding obtained from PyRx for 15-PGDH-ZINC14557836, 15-PGDH-ZINC14638400, and 15-PGDH-SW033291 complexes were - 10.30, -9.80, and - 8.0 kcal/mol, respectively. Root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), radii of gyration (Rg), solvent-accessible surface areas (SASAs), and H-bond parameters obtained by 100 ns MD simulations predicted ZINC14557836 and ZINC14638400 more stably complexed with 15-PGDH than SW033291. The several parameters, including physicochemical properties and drug-likenesses, were within acceptable limits, and ZINC14557836 and ZINC14638400 also satisfied other drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge. These findings suggest that ZINC14557836 and ZINC14638400 provide starting points for the development of medications that increase SM regeneration and muscle stem (or satellite) cell numbers by inhibiting 15-PGDH.

4.
Opt Express ; 31(12): 19569-19587, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381369

ABSTRACT

We describe a robust dynamic spectroscopic imaging ellipsometer (DSIE) based on a monolithic Linnik-type polarizing interferometer. The Linnik-type monolithic scheme combined with an additional compensation channel solves the long-term stability problem of previous single-channel DSIE. The importance of a global mapping phase error compensation method is also addressed for accurate 3-D cubic spectroscopic ellipsometric mapping in large-scale applications. To evaluate the effectiveness of the proposed compensation method for enhancing system robustness and reliability, a whole thin film wafer mapping is conducted in a general environment where various external disturbances affect the system.

5.
Appl Opt ; 62(8): 1943-1951, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133079

ABSTRACT

This paper describes a full Stokes polarimeter employing a monolithic off-axis polarizing interferometric module and a 2D array sensor. The proposed passive polarimeter provides a dynamic full Stokes vector measurement capability of around 30 Hz. As the proposed polarimeter employs no active devices and is operated by employing an imaging sensor, it has significant potential to become a highly compact polarization sensor for smartphone applications. To show the feasibility of the proposed passive dynamic polarimeter scheme, the full Stokes parameters of a quarter-wave plate are extracted and displayed on a Poincare sphere by varying the polarization state of the measured beam.

6.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139116

ABSTRACT

Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.


Subject(s)
Diabetes Mellitus , Neurodegenerative Diseases , Panax , Humans , Obesity , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy
7.
Semin Cancer Biol ; 69: 325-336, 2021 02.
Article in English | MEDLINE | ID: mdl-31454671

ABSTRACT

Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Integrins/antagonists & inhibitors , Molecular Targeted Therapy/methods , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Animals , Disease Management , Humans , Nanoparticles/chemistry , Neoplasms/pathology
8.
Environ Res ; 212(Pt B): 113273, 2022 09.
Article in English | MEDLINE | ID: mdl-35439456

ABSTRACT

Natural products derived carbon quantum dots (CQDs) catch huge attention owing to their distinctive properties of smaller size, water dispersibility, high photostability, lower cost, tunable emission, biocompatibility, least toxicity, electrical conductivity, optical and catalytic properties, and easy modification. Herein high fluorescent CQDs were prepared using Borassus flabellifer (ice apple) as a carbon source utilizing the simplistic one-step hydrothermal method. The prepared CQDs possessed excellent photoluminescence, high photostability, and stability in an aqueous solution and harbored large of quantum yield and strong stability in high pH conditions with the characteristic strong blue fluorescence emission. With these superior properties, the CQDs have been used as sensing probes for the detection of Fe3+ ions having excellent selectivity and sensitivity with a 2.01 µM limit of detection. The CQDs decorated probe was found effective in detecting Fe3+ ions in the tap and drinking mineral water, suggesting the applicability of the prepared sensor. The developed sensor exhibited advantages, including simple, low-cost, label-free, rapid, and good sensitivity and selectivity towards Fe3+ ions, with a great application for detection of such ions in real water.


Subject(s)
Quantum Dots , Carbon/chemistry , Endosperm , Fluorescent Dyes/chemistry , Ions , Quantum Dots/chemistry , Water
9.
Appl Opt ; 61(26): 7653-7661, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36256365

ABSTRACT

This paper describes a robust dynamic spectroscopic ellipsometer that can provide a highly accurate and reliable real-time spectroscopic polarization measurement capability for various in-line nanoscale measurement applications. The robustness of dynamic spectroscopic ellipsometry is enhanced significantly by employing a compensation channel that removes the temperature dependency of the monolithic polarizing interferometric module, and it results in highly accurate dynamic spectral ellipsometric measurements. We present how the monolithic interferometer is affected by external disturbances and show experimentally that the proposed scheme can provide a few hundreds of times long-term stability enhancement compared with a single-channel-based dynamic spectroscopic ellipsometer scheme.

10.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457038

ABSTRACT

The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.


Subject(s)
Muscular Diseases , Myostatin , Animals , Fibromodulin/metabolism , Mice , Muscle Development , Muscle, Skeletal/metabolism , Muscles/metabolism , Muscular Atrophy/metabolism , Muscular Diseases/metabolism , Myostatin/genetics , Myostatin/metabolism , Peptides/metabolism
11.
Molecules ; 27(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35807547

ABSTRACT

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.


Subject(s)
Medicine, Chinese Traditional , Muscular Diseases/drug therapy , Myostatin/antagonists & inhibitors , Computer Simulation , Drug Evaluation, Preclinical , Molecular Dynamics Simulation , Muscle Development/drug effects , Muscular Diseases/physiopathology , Protein Binding
12.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809794

ABSTRACT

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5ß1, αvß3, and αIIbß3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30-40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Subject(s)
Cell Differentiation/drug effects , Fibronectins/chemistry , Mesenchymal Stem Cells/cytology , Peptides/pharmacology , Alginates , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , HeLa Cells , Humans , Integrins/metabolism , Mesenchymal Stem Cells/drug effects , Mice , Models, Molecular , Osteogenesis/drug effects , Protein Domains , Rats , Receptors, Cell Surface/metabolism
13.
Int J Mol Sci ; 22(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467209

ABSTRACT

Skeletal muscle is the most abundant tissue and constitutes about 40% of total body mass. Herein, we report that crude water extract (CWE) of G. uralensis enhanced myoblast proliferation and differentiation. Pretreatment of mice with the CWE of G. uralensis prior to cardiotoxin-induced muscle injury was found to enhance muscle regeneration by inducing myogenic gene expression and downregulating myostatin expression. Furthermore, this extract reduced nitrotyrosine protein levels and atrophy-related gene expression. Of the five different fractions of the CWE of G. uralensis obtained, the ethyl acetate (EtOAc) fraction more significantly enhanced myoblast proliferation and differentiation than the other fractions. Ten bioactive compounds were isolated from the EtOAc fraction and characterized by GC-MS and NMR. Of these compounds (4-hydroxybenzoic acid, liquiritigenin, (R)-(-)-vestitol, isoliquiritigenin, medicarpin, tetrahydroxymethoxychalcone, licochalcone B, liquiritin, liquiritinapioside, and ononin), liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B were found to enhance myoblast proliferation and differentiation, and myofiber diameters in injured muscles were wider with the liquiritigenin than the non-treated one. Computational analysis showed these compounds are non-toxic and possess good drug-likeness properties. These findings suggest that G. uralensis-extracted components might be useful therapeutic agents for the management of muscle-associated diseases.


Subject(s)
Glycyrrhiza uralensis/chemistry , Muscular Atrophy/drug therapy , Plant Extracts/chemistry , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Mice , Mice, Inbred C57BL , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Myostatin/genetics , Myostatin/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tyrosine/analogs & derivatives , Tyrosine/metabolism
14.
Molecules ; 26(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34500839

ABSTRACT

The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia. Sequential screening of 2000 natural compounds was performed, and dithymoquinone (DTQ) was found to inhibit MSTN with a binding free energy of -7.40 kcal/mol. Furthermore, the docking results showed that DTQ reduced the binding interaction between MSTN and its receptor, activin receptor type-2B (ActR2B). The global energy of MSTN-ActR2B was found to be reduced from -47.75 to -40.45 by DTQ. The stability of the DTQ-MSTN complex was subjected to a molecular dynamics analysis for up to 100 ns to check the stability of the complex using RMSD, RMSF, Rg, SASA, and H-bond number. The complex was found to be stable after 10 ns to the end of the simulation. These results suggest that DTQ blocks MSTN signaling through ActR2B and that it has potential use as a muscle growth-promoting agent during the aging process.


Subject(s)
Benzoquinones/chemistry , Muscular Diseases/metabolism , Myostatin/antagonists & inhibitors , Sarcopenia/metabolism , Activin Receptors, Type II/metabolism , Amino Acid Sequence , Benzoquinones/metabolism , Benzoquinones/pharmacology , Drug Evaluation, Preclinical , Humans , Kinetics , Molecular Dynamics Simulation , Muscle Fibers, Skeletal , Muscular Diseases/drug therapy , Protein Binding , Protein Conformation , Signal Transduction
15.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946559

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and is characterized by irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD, and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have been developed to treat the disease. However, there is currently no treatment for AD, as most drug-like compounds have failed in clinical trials. Acetylcholinesterase (AChE) is the target of most drugs used commercially to treat AD. This work focused on screening natural compounds obtained from the ZINC database (224, 205 compounds) against AChE to identify those possibly capable of enabling the management of AD. Indirubin and dehydroevodiamine were the best potential AChE inhibitors with free binding energies of -10.03 and -9.00 kcal/mol, respectively. The key residue (His447) of the active site of AChE was found to participate in complex interactions with these two molecules. Six H-bonds were involved in the 'indirubin-AChE' interaction and three H-bonds in the 'dehydroevodiamine-AChE' interaction. These compounds were predicted to cross the blood-brain barrier (BBB) and to exhibit high levels of intestinal absorption. Furthermore, 'indirubin-AChE' and 'dehydroevodiamine-AChE' complexes were found to be stable, as determined by root mean square deviation (RMSD) during a 50 ns molecular dynamics simulation study. Based on the free binding energies and stabilities obtained by simulation studies, we recommend that experimental studies be undertaken on indirubin and dehydroevodiamine with a view towards their potential use as treatments for AD.


Subject(s)
Acetylcholinesterase/chemistry , Biological Products/chemistry , Cholinesterase Inhibitors/chemistry , Computational Biology/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Alzheimer Disease/drug therapy , Binding Sites , Biological Products/pharmacology , Cholinesterase Inhibitors/pharmacology , Databases, Pharmaceutical , Humans , Molecular Structure , Protein Binding , Protein Conformation , Structure-Activity Relationship
16.
Semin Cancer Biol ; 56: 1-11, 2019 06.
Article in English | MEDLINE | ID: mdl-29248538

ABSTRACT

Extensive growth of cancer in humans is a major cause of death. Numerous studies are being conducted to improve the early diagnosis, prevention, and treatment of cancer. Recent technological advancements in medical science and research indicate molecular target therapy holds much promise in cancer treatment. In the past, therapeutic and diagnostic targeting of non-glycolytic and glycolytic enzymes in cancer have been successful, and discoveries of biomarker enzymes in cancer hold promise for therapeutic treatments. In this review, we discuss the roles of several cancer-associated enzymes that could potentially act as therapeutic targets, and place special focus on non-glycolytic and glycolytic enzymes. This review indicates that the targeting of metabolic signaling offers a promising means of developing novel anti-cancer therapies.


Subject(s)
Biomarkers, Tumor/antagonists & inhibitors , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/enzymology , Animals , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucose/metabolism , Glycolysis/drug effects , Humans , Neoplasms/etiology , Neoplasms/prevention & control
17.
Mar Drugs ; 18(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302530

ABSTRACT

Natural polysaccharides exhibit beneficial immune modulatory effects, including immune stimulatory and anti-cancer activities. In this study, we examined the effect of Codium fragile polysaccharide (CFP) on natural killer (NK) cell activation, and its effect on tumor-bearing mice. Intravenous CFP treatment of C57BL/6 mice resulted in the upregulation of CD69, which is a marker associated with NK cell activation. In addition, intracellular levels of interferon (IFN)-γ and the cytotoxic mediators perforin and granzyme B were markedly increased in response to the CFP treatment of splenic NK cells. IFN-γ production by NK cells was directly induced by CFP, whereas the upregulation of CD69 and cytotoxic mediators required IL-12. Finally, intraperitoneal treatment with CFP prevented CT-26 (murine carcinoma) tumor cell infiltration in the lungs, without significantly reducing the body weight. In addition, treatment with CFP prevented B16 melanoma cell infiltration in the lung of C57BL/6 mice. Moreover, the anti-tumor effect was diminished by the depletion of NK cells. Therefore, these data suggest that CFP may be used as an NK cell stimulator to produce a phenomenon that contributes to anti-cancer immunity.


Subject(s)
Antineoplastic Agents/pharmacology , Chlorophyta/metabolism , Colonic Neoplasms/drug therapy , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/drug therapy , Polysaccharides/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Granzymes , Interferon-gamma/metabolism , Interleukin-12/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lectins, C-Type/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Polysaccharides/isolation & purification , Pore Forming Cytotoxic Proteins/metabolism , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , Tumor Microenvironment
18.
Mar Drugs ; 18(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33120897

ABSTRACT

Natural polysaccharides exhibit an immunostimulatory effect with low toxicity in humans and animals. It has shown that polysaccharide extracted from Codium fragile (CFP) induces anti-cancer immunity by dendritic cell (DC) activation, while the effect of CFP has not examined in the human immune cells. In this study, we found that CFP promoted the upregulation of CD80, CD83 and CD86 and major histocompatibility complex (MHC) class I and II in human monocyte-derived dendritic cells (MDDCs). In addition, CFP induced the production of proinflammatory cytokines in MDDCs. Moreover, CFP directly induced the activation of Blood Dendritic Cell Antigen (BDCA)1+ and BDCA3+ subsets of human peripheral blood DCs (PBDCs). The CFP-stimulated BDCA1+ PBDCs further promoted activation and proliferation of syngeneic CD4 T cells. The CFP-activated BDCA3+ PBDCs activated syngeneic CD8 T cells, which produced cytotoxic mediators, namely, cytotoxic T lymphocytes. These results suggest that CFP may be a candidate molecule for enhancing immune activation in humans.


Subject(s)
Adjuvants, Immunologic/pharmacology , Chlorophyta/metabolism , Dendritic Cells/drug effects , Immunity, Cellular/drug effects , Lymphocyte Activation/drug effects , Polysaccharides/pharmacology , T-Lymphocytes/drug effects , Adjuvants, Immunologic/isolation & purification , Animals , Cell Proliferation/drug effects , Coculture Techniques , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , HL-60 Cells , Humans , Mice , Polysaccharides/isolation & purification , RAW 264.7 Cells , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
19.
Int J Mol Sci ; 21(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481704

ABSTRACT

The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Skeletal muscle ECM is a complex network comprising collagens, proteoglycans, glycoproteins, and elastin. Recent therapeutic approaches targeting ECM remodeling have been extensively deliberated. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. Skeletal muscle ECM remodeling is thought to be a feature of the pathogenic milieu allied with metabolic dysregulation, obesity, and eventual diabetes. This narrative review explores the current understanding of key components of skeletal muscle ECM and their specific roles in the regulation of metabolic diseases. Additionally, we discuss muscle-specific integrins and their role in the regulation of insulin sensitivity. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.


Subject(s)
Diabetes Mellitus/metabolism , Extracellular Matrix/metabolism , Metabolic Diseases/metabolism , Muscle, Skeletal/metabolism , Animals , Collagen/metabolism , Elastin/metabolism , Homeostasis , Humans , Insulin Resistance , Integrins/metabolism , Laminin/metabolism , Mice , Rats
20.
Molecules ; 25(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365525

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia and usually manifests as diminished episodic memory and cognitive functions. Caspases are crucial mediators of neuronal death in a number of neurodegenerative diseases, and caspase 8 is considered a major therapeutic target in the context of AD. In the present study, we performed a virtual screening of 200 natural compounds by molecular docking with respect to their abilities to bind with caspase 8. Among them, rutaecarpine was found to have the highest (negative) binding energy (-6.5 kcal/mol) and was further subjected to molecular dynamics (MD) simulation analysis. Caspase 8 was determined to interact with rutaecarpine through five amino acid residues, specifically Thr337, Lys353, Val354, Phe355, and Phe356, and two hydrogen bonds (ligand: H35-A: LYS353:O and A:PHE355: N-ligand: N5). Furthermore, a 50 ns MD simulation was conducted to optimize the interaction, to predict complex flexibility, and to investigate the stability of the caspase 8-rutaecarpine complex, which appeared to be quite stable. The obtained results propose that rutaecarpine could be a lead compound that bears remarkable anti-Alzheimer's potential against caspase 8.


Subject(s)
Caspase 8/chemistry , Caspase Inhibitors/chemistry , Caspase Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Binding Sites , Chemical Phenomena , Humans , Hydrogen Bonding , Ligands , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL