Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
RNA ; 30(6): 609-623, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38383158

ABSTRACT

Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.


Subject(s)
Nucleic Acid Conformation , RNA, Viral , Small Molecule Libraries , Zika Virus , Zika Virus/genetics , Zika Virus/drug effects , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Binding Sites , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Crystallography, X-Ray , Models, Molecular , Promoter Regions, Genetic
2.
Nucleic Acids Res ; 51(16): 8850-8863, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37486760

ABSTRACT

The genomes of positive-strand RNA viruses serve as a template for both protein translation and genome replication. In enteroviruses, a cloverleaf RNA structure at the 5' end of the genome functions as a switch to transition from viral translation to replication by interacting with host poly(C)-binding protein 2 (PCBP2) and the viral 3CDpro protein. We determined the structures of cloverleaf RNA from coxsackievirus and poliovirus. Cloverleaf RNA folds into an H-type four-way junction and is stabilized by a unique adenosine-cytidine-uridine (A•C-U) base triple involving the conserved pyrimidine mismatch region. The two PCBP2 binding sites are spatially proximal and are located on the opposite end from the 3CDpro binding site on cloverleaf. We determined that the A•C-U base triple restricts the flexibility of the cloverleaf stem-loops resulting in partial occlusion of the PCBP2 binding site, and elimination of the A•C-U base triple increases the binding affinity of PCBP2 to the cloverleaf RNA. Based on the cloverleaf structures and biophysical assays, we propose a new mechanistic model by which enteroviruses use the cloverleaf structure as a molecular switch to transition from viral protein translation to genome replication.


Subject(s)
Enterovirus , Genome, Viral , Poliovirus , RNA, Viral , Humans , Enterovirus/genetics , Enterovirus/physiology , HeLa Cells , Nucleic Acid Conformation , Poliovirus/genetics , Poliovirus/physiology , Protein Biosynthesis , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
3.
Nucleic Acids Res ; 51(22): 12397-12413, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941151

ABSTRACT

Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.


Subject(s)
Hepacivirus , Hepatitis C , MicroRNAs , Humans , 5' Untranslated Regions , Carrier Proteins/genetics , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/genetics
4.
Proc Natl Acad Sci U S A ; 117(30): 17992-18001, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32669438

ABSTRACT

Dengue virus (DENV) was designated as a top 10 public health threat by the World Health Organization in 2019. No clinically approved anti-DENV drug is currently available. Here we report the high-resolution cocrystal structure (1.5 Å) of the DENV-2 capsid protein in complex with an inhibitor that potently suppresses DENV-2 but not other DENV serotypes. The inhibitor induces a "kissing" interaction between two capsid dimers. The inhibitor-bound capsid tetramers are assembled inside virions, resulting in defective uncoating of nucleocapsid when infecting new cells. Resistant DENV-2 emerges through one mutation that abolishes hydrogen bonds in the capsid structure, leading to a loss of compound binding. Structure-based analysis has defined the amino acids responsible for the inhibitor's inefficacy against other DENV serotypes. The results have uncovered an antiviral mechanism through inhibitor-induced tetramerization of the viral capsid and provided essential structural and functional knowledge for rational design of panserotype DENV capsid inhibitors.


Subject(s)
Antiviral Agents/chemistry , Capsid Proteins/chemistry , Dengue Virus , Models, Molecular , Protein Conformation , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites , Capsid Proteins/genetics , Dengue Virus/drug effects , Mutation , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship
5.
Nucleic Acids Res ; 48(20): 11737-11749, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33089330

ABSTRACT

Double-stranded DNA viruses use ATP-powered molecular motors to package their genomic DNA. To ensure efficient genome encapsidation, these motors regulate functional transitions between initiation, translocation, and termination modes. Here, we report structural and biophysical analyses of the C-terminal domain of the bacteriophage phi29 ATPase (CTD) that suggest a structural basis for these functional transitions. Sedimentation experiments show that the inter-domain linker in the full-length protein promotes oligomerization and thus may play a role in assembly of the functional motor. The NMR solution structure of the CTD indicates it is a vestigial nuclease domain that likely evolved from conserved nuclease domains in phage terminases. Despite the loss of nuclease activity, fluorescence binding assays confirm the CTD retains its DNA binding capabilities and fitting the CTD into cryoEM density of the phi29 motor shows that the CTD directly binds DNA. However, the interacting residues differ from those identified by NMR titration in solution, suggesting that packaging motors undergo conformational changes to transition between initiation, translocation, and termination. Taken together, these results provide insight into the evolution of functional transitions in viral dsDNA packaging motors.


Subject(s)
DNA Packaging , DNA, Viral/metabolism , DNA-Binding Proteins/chemistry , Viral Genome Packaging , Viral Proteins/chemistry , Bacillus Phages/chemistry , Bacillus Phages/genetics , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Esterases/chemistry , Evolution, Molecular , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , RNA, Viral/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
6.
PLoS Pathog ; 14(1): e1006764, 2018 01.
Article in English | MEDLINE | ID: mdl-29300779

ABSTRACT

Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis.


Subject(s)
Encephalitis Viruses, Tick-Borne/pathogenicity , Encephalitis, Tick-Borne/transmission , Exosomes/virology , Models, Biological , Neurons/virology , RNA, Viral/metabolism , Viral Proteins/metabolism , Animals , Arthropod Vectors/cytology , Arthropod Vectors/ultrastructure , Arthropod Vectors/virology , Cell Line , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/pathology , Cerebral Cortex/ultrastructure , Cerebral Cortex/virology , Chlorocebus aethiops , Coculture Techniques , Cryoelectron Microscopy , Embryo, Mammalian/cytology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Viruses, Tick-Borne/ultrastructure , Encephalitis, Tick-Borne/pathology , Encephalitis, Tick-Borne/virology , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Endothelium, Vascular/ultrastructure , Endothelium, Vascular/virology , Exosomes/ultrastructure , Host-Parasite Interactions , Host-Pathogen Interactions , Humans , Ixodes/cytology , Ixodes/ultrastructure , Ixodes/virology , Keratinocytes/cytology , Keratinocytes/pathology , Keratinocytes/ultrastructure , Keratinocytes/virology , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/pathology , Neurons/ultrastructure
7.
J Biol Chem ; 292(23): 9465-9479, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28396347

ABSTRACT

Four serotypes of mosquito-borne dengue virus (DENV), evolved from a common ancestor, are human pathogens of global significance for which there is no vaccine or antiviral drug available. The N-terminal domain of DENV NS5 has guanylyltransferase and methyltransferase (MTase), and the C-terminal region has the polymerase (POL), all of which are important for 5'-capping and RNA replication. The crystal structure of NS5 shows it as a dimer, but the functional evidence for NS5 dimer is lacking. Our studies showed that the substitution of DENV2 NS5 MTase or POL for DENV4 NS5 within DENV2 RNA resulted in a severe attenuation of replication in the transfected BHK-21 cells. A replication-competent species was evolved with the acquired mutations in the DENV2 and DENV4 NS5 MTase or POL domain or in the DENV2 NS3 helicase domain in the DENV2 chimera RNAs by repeated passaging of infected BHK-21 or mosquito cells. The linker region of seven residues in NS5, rich in serotype-specific residues, is important for the recovery of replication fitness in the chimera RNA. Our results, taken together, provide genetic evidence for a serotype-specific interaction between NS3 and NS5 as well as specific interdomain interaction within NS5 required for RNA replication. Genome-wide RNAseq analysis revealed the distribution of adaptive mutations in RNA quasispecies. Those within NS3 and NS5 are located at the surface and/or within the NS5 dimer interface, providing a functional significance to the crystal structure NS5 dimer.


Subject(s)
Dengue Virus/physiology , RNA, Viral , Serogroup , Viral Nonstructural Proteins , Virus Replication/physiology , Animals , Cell Line , Cricetinae , Culicidae , Humans , Protein Domains , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/immunology , RNA Helicases/metabolism , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/immunology , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
8.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28356528

ABSTRACT

The process of RNA replication by dengue virus is still not completely understood despite the significant progress made in the last few years. Stem-loop A (SLA), a part of the viral 5' untranslated region (UTR), is critical for the initiation of dengue virus replication, but quantitative analysis of the interactions between the dengue virus polymerase NS5 and SLA in solution has not been performed. Here, we examine how solution conditions affect the size and shape of SLA and the formation of the NS5-SLA complex. We show that dengue virus NS5 binds SLA with a 1:1 stoichiometry and that the association reaction is primarily entropy driven. We also observe that the NS5-SLA interaction is influenced by the magnesium concentration in a complex manner. Binding is optimal with 1 mM MgCl2 but decreases with both lower and higher magnesium concentrations. Additionally, data from a competition assay between SLA and single-stranded RNA (ssRNA) indicate that SLA competes with ssRNA for the same binding site on the NS5 polymerase. SLA70 and SLA80, which contain the first 70 and 80 nucleotides (nt), respectively, bind NS5 with similar binding affinities. Dengue virus NS5 also binds SLAs from different serotypes, indicating that NS5 recognizes the overall shape of SLA as well as specific nucleotides.IMPORTANCE Dengue virus is an important human pathogen responsible for dengue hemorrhagic fever, whose global incidence has increased dramatically over the last several decades. Despite the clear medical importance of dengue virus infection, the mechanism of viral replication, a process commonly targeted by antiviral therapeutics, is not well understood. In particular, stem-loop A (SLA) and stem-loop B (SLB) located in the 5' untranslated region (UTR) are critical for binding the viral polymerase NS5 to initiate minus-strand RNA synthesis. However, little is known regarding the kinetic and thermodynamic parameters driving these interactions. Here, we quantitatively examine the energetics of intrinsic affinities, characterize the stoichiometry of the complex of NS5 and SLA, and determine how solution conditions such as magnesium and sodium concentrations and temperature influence NS5-SLA interactions in solution. Quantitatively characterizing dengue virus NS5-SLA interactions will facilitate the design and assessment of antiviral therapeutics that target this essential step of the dengue virus life cycle.


Subject(s)
5' Untranslated Regions/physiology , Dengue Virus/physiology , Inverted Repeat Sequences , Viral Nonstructural Proteins/metabolism , 5' Untranslated Regions/drug effects , 5' Untranslated Regions/genetics , Binding Sites/drug effects , Cell Line , Dengue , Dengue Virus/genetics , Entropy , Humans , Magnesium Chloride/pharmacology , Promoter Regions, Genetic , RNA, Viral/genetics , Serogroup , Viral Nonstructural Proteins/chemistry , Virus Attachment/drug effects , Virus Replication
9.
PLoS Pathog ; 12(2): e1005451, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26895240

ABSTRACT

Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5'-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication.


Subject(s)
Dengue Virus/metabolism , Methyltransferases/genetics , Protein Multimerization , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/chemistry
10.
J Virol ; 90(17): 7740-7, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27334592

ABSTRACT

UNLABELLED: Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/ß) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein N(pro) that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant N(pro) and IRF3 proteins and show that N(pro) interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between N(pro) and IRF3 is not dependent on the activation state of IRF3, since N(pro) binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the N(pro)-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE: The pestivirus N-terminal protease, N(pro), is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the N(pro) interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that N(pro) targets for degradation, is largely unknown. We show that classical swine fever virus N(pro) and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with N(pro) Additionally, N(pro) interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that N(pro) is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.


Subject(s)
Classical Swine Fever Virus/enzymology , Classical Swine Fever Virus/physiology , Endopeptidases/metabolism , Host-Pathogen Interactions , Interferon Regulatory Factor-3/metabolism , Viral Proteins/metabolism , Protein Binding , Protein Interaction Mapping
11.
Bioorg Med Chem ; 24(4): 570-7, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26762834

ABSTRACT

Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20µM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds.


Subject(s)
Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enterovirus C, Human/drug effects , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Allosteric Regulation/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , DNA-Directed RNA Polymerases/metabolism , Dose-Response Relationship, Drug , Enterovirus C, Human/enzymology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Virus Replication/drug effects
12.
Methods ; 91: 20-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26272247

ABSTRACT

Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge.


Subject(s)
Flavivirus/metabolism , Nucleic Acid Amplification Techniques/methods , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Flavivirus/genetics
13.
J Biol Chem ; 289(32): 22385-400, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24904061

ABSTRACT

Flavivirus NS3 and NS5 are required in viral replication and 5'-capping. NS3 has NS2B-dependent protease, RNA helicase, and 5'-RNA triphosphatase activities. NS5 has 5'-RNA methyltransferase (MT)/guanylyltransferase (GT) activities within the N-terminal 270 amino acids and the RNA-dependent RNA polymerase (POL) activity within amino acids 271-900. A chimeric NS5 containing the D4MT/D4GT and the D2POL domains in the context of wild-type (WT) D2 RNA was constructed. RNAs synthesized in vitro were transfected into baby hamster kidney cells. The viral replication was analyzed by an indirect immunofluorescence assay to monitor NS1 expression and by quantitative real-time PCR. WT D2 RNA-transfected cells were NS1- positive by day 5, whereas the chimeric RNA-transfected cells became NS1-positive ∼30 days post-transfection in three independent experiments. Sequence analysis covering the entire genome revealed the appearance of a single K74I mutation within the D4MT domain ∼16 days post-transfection in two experiments. In the third, D290N mutation in the conserved NS3 Walker B motif appeared ≥16 days post-transfection. A time course study of serial passages revealed that the 30-day supernatant had gradually evolved to gain replication fitness. Trans-complementation by co-expression of WT D2 NS5 accelerated viral replication of chimeric RNA without changing the K74I mutation. However, the MT and POL activities of NS5 WT D2 and the chimeric NS5 proteins with or without the K74I mutation are similar. Taken together, our results suggest that evolution of the functional interactions involving the chimeric NS5 protein encoded by the viral genome species is essential for gain of viral replication fitness.


Subject(s)
Dengue Virus/genetics , Dengue Virus/physiology , RNA, Viral/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cricetinae , Dengue Virus/classification , Genetic Fitness , Genome, Viral , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Conformation , Protein Structure, Tertiary , RNA/genetics , Sequence Homology, Amino Acid , Serotyping , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/physiology , Virulence/genetics , Virulence/physiology , Virus Replication/genetics
14.
PLoS Pathog ; 9(10): e1003704, 2013.
Article in English | MEDLINE | ID: mdl-24146623

ABSTRACT

Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro)) is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, N(pro) is no longer active as a protease. The released N(pro) suppresses the induction of the host's type-I interferon-α/ß (IFN-α/ß) response. N(pro) binds interferon regulatory factor-3 (IRF3), the key transcriptional activator of IFN-α/ß genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/ß response to pestivirus infection. Here we report the crystal structures of pestivirus N(pro). N(pro) is structurally distinct from other known cysteine proteases and has a novel "clam shell" fold consisting of a protease domain and a zinc-binding domain. The unique fold of N(pro) allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of N(pro) involved in targeting IRF3 for proteasomal degradation provides insight into the nature of N(pro)'s interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of N(pro), and its role in subversion of host immune response.


Subject(s)
Classical Swine Fever Virus/enzymology , Cysteine Proteases/chemistry , Interferon Type I , Protein Folding , Animals , Catalysis , Catalytic Domain , Classical Swine Fever Virus/genetics , Crystallography, X-Ray , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Structure-Activity Relationship , Swine
15.
Nat Commun ; 15(1): 4198, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760344

ABSTRACT

During HIV infection, specific RNA-protein interaction between the Rev response element (RRE) and viral Rev protein is required for nuclear export of intron-containing viral mRNA transcripts. Rev initially binds the high-affinity site in stem-loop II, which promotes oligomerization of additional Rev proteins on RRE. Here, we present the crystal structure of RRE stem-loop II in distinct closed and open conformations. The high-affinity Rev-binding site is located within the three-way junction rather than the predicted stem IIB. The closed and open conformers differ in their non-canonical interactions within the three-way junction, and only the open conformation has the widened major groove conducive to initial Rev interaction. Rev binding assays show that RRE stem-loop II has high- and low-affinity binding sites, each of which binds a Rev dimer. We propose a binding model, wherein Rev-binding sites on RRE are sequentially created through structural rearrangements induced by Rev-RRE interactions.


Subject(s)
HIV-1 , Nucleic Acid Conformation , RNA, Viral , rev Gene Products, Human Immunodeficiency Virus , HIV-1/metabolism , HIV-1/genetics , Binding Sites , rev Gene Products, Human Immunodeficiency Virus/metabolism , rev Gene Products, Human Immunodeficiency Virus/chemistry , rev Gene Products, Human Immunodeficiency Virus/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Crystallography, X-Ray , Protein Binding , Models, Molecular , Humans , Response Elements
16.
Nucleic Acids Res ; 39(21): 9206-23, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21852327

ABSTRACT

The Shelterin complex associates with telomeres and plays an essential role in telomere protection and telomerase regulation. In its most abundant form, the complex is composed of six core components: TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Of these subunits, three can interact directly with either single-stranded (POT1) or double-stranded (TRF1, TRF2) telomeric DNA. In this report, we have developed assays to measure the DNA binding activity of Shelterin complexes in human cell extracts. With these assays, we have characterized the composition and DNA binding specificity of two Shelterin complexes: a 6-member complex that contains all six core components and a second complex that lacks TRF1. Our results show that both of these complexes bind with high affinity (K(D) = 1.3-1.5 × 10(-9) M) and selectively to ds/ss-DNA junctions that carry both a binding site for POT1 (ss-TTAGGGTTAG) and a binding site for the SANT/Myb domain of TRF1 or TRF2 (ds-TTAGGGTTA). This DNA binding specificity suggests the preferential recruitment of these complexes to areas of the telomere where ss- and ds-DNA are in close proximity, such as the 3'-telomeric overhang, telomeric DNA bubbles and the D-loop at the base of T-loops.


Subject(s)
DNA/metabolism , Telomere-Binding Proteins/metabolism , Cell Line , HeLa Cells , Humans , Shelterin Complex , Telomere/metabolism , Telomeric Repeat Binding Protein 2/metabolism
17.
Antiviral Res ; 210: 105516, 2023 02.
Article in English | MEDLINE | ID: mdl-36586467

ABSTRACT

Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.


Subject(s)
Flavivirus Infections , Flavivirus , Peptide Hydrolases , Animals , Female , Humans , Pregnancy , Dengue/prevention & control , Dengue Virus , Flavivirus/enzymology , Pandemics , Placenta , Zika Virus , Zika Virus Infection/prevention & control , Flavivirus Infections/prevention & control
18.
Biochemistry ; 51(30): 5921-31, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22757685

ABSTRACT

Dengue virus (DENV) nonstructural protein 5 (NS5) is composed of two globular domains separated by a 10-residue linker. The N-terminal domain participates in the synthesis of a mRNA cap 1 structure ((7Me)GpppA(2'OMe)) at the 5' end of the viral genome and possesses guanylyltransferase, guanine-N7-methyltransferase, and nucleoside-2'O-methyltransferase activities. The C-terminal domain is an RNA-dependent RNA polymerase responsible for viral RNA synthesis. Although crystal structures of the two isolated domains have been obtained, there are no structural data for full-length NS5. It is also unclear whether the two NS5 domains interact with each other to form a stable structure in which the relative orientation of the two domains is fixed. To investigate the structure and dynamics of DENV type 3 NS5 in solution, we conducted small-angle X-ray scattering experiments with the full-length protein. NS5 was found to be monomeric and well-folded under the conditions tested. The results of these experiments also suggest that NS5 adopts multiple conformations in solution, ranging from compact to more extended forms in which the two domains do not seem to interact with each other. We interpret the multiple conformations of NS5 observed in solution as resulting from weak interactions between the two NS5 domains and flexibility of the linker in the absence of other components of the replication complex.


Subject(s)
Dengue Virus/chemistry , Viral Nonstructural Proteins/chemistry , Crystallography, X-Ray , Dengue Virus/physiology , Protein Conformation , Solutions/chemistry , Viral Nonstructural Proteins/physiology , Viral Proteins/chemistry , Virus Replication/physiology
19.
J Biol Chem ; 286(38): 33095-108, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21725087

ABSTRACT

Fundamental aspects of interactions of the Dengue virus type 3 full-length polymerase with the single-stranded and double-stranded RNA and DNA have been quantitatively addressed. The polymerase exists as a monomer with an elongated shape in solution. In the absence of magnesium, the total site size of the polymerase-ssRNA complex is 26 ± 2 nucleotides. In the presence of Mg(2+), the site size increases to 29 ± 2 nucleotides, indicating that magnesium affects the enzyme global conformation. The enzyme shows a preference for the homopyrimidine ssRNAs. Positive cooperativity in the binding to homopurine ssRNAs indicates that the type of nucleic acid base dramatically affects the enzyme orientation in the complex. Both the intrinsic affinity and the cooperative interactions are accompanied by a net ion release. The polymerase binds the dsDNA with an affinity comparable with the ssRNAs affinity, indicating that the binding site has an open conformation in solution. The lack of detectable dsRNA or dsRNA-DNA hybrid affinities indicates that the entry to the binding site is specific for the sugar-phosphate backbone and/or conformation of the duplex.


Subject(s)
DNA, Viral/metabolism , Dengue Virus/enzymology , Nucleotides/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Fluorescence , Kinetics , Magnesium , Models, Molecular , Nucleic Acid Heteroduplexes , Protein Binding , Protein Structure, Quaternary , Solutions , Substrate Specificity , Thermodynamics
20.
Adv Exp Med Biol ; 726: 267-304, 2012.
Article in English | MEDLINE | ID: mdl-22297518

ABSTRACT

Viral polymerases play a central role in viral genome replication and transcription. Based on the genome type and the specific needs of particular virus, RNA-dependent RNA polymerase, RNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and DNA-dependent RNA polymerases are found in various viruses. Viral polymerases are generally active as a single protein capable of carrying out multiple functions related to viral genome synthesis. Specifically, viral polymerases use variety of mechanisms to recognize initial binding sites, ensure processive elongation, terminate replication at the end of the genome, and also coordinate the chemical steps of nucleic acid synthesis with other enzymatic activities. This review focuses on different viral genome replication and transcription strategies, and the polymerase interactions with various viral proteins that are necessary to complete genome synthesis.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/metabolism , Viral Proteins/metabolism , Viruses/enzymology , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/metabolism , Protein Conformation , Protein Folding , Viral Proteins/chemistry , Viral Proteins/genetics , Viruses/chemistry , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL