Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(23): 2425-2432, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38498041

ABSTRACT

ABSTRACT: The factor V Leiden (FVL; rs6025) and prothrombin G20210A (PTGM; rs1799963) polymorphisms are 2 of the most well-studied genetic risk factors for venous thromboembolism (VTE). However, double heterozygosity (DH) for FVL and PTGM remains poorly understood, with previous studies showing marked disagreement regarding thrombosis risk conferred by the DH genotype. Using multidimensional data from the UK Biobank (UKB) and FinnGen biorepositories, we evaluated the clinical impact of DH carrier status across 937 939 individuals. We found that 662 participants (0.07%) were DH carriers. After adjustment for age, sex, and ancestry, DH individuals experienced a markedly elevated risk of VTE compared with wild-type individuals (odds ratio [OR] = 5.24; 95% confidence interval [CI], 4.01-6.84; P = 4.8 × 10-34), which approximated the risk conferred by FVL homozygosity. A secondary analysis restricted to UKB participants (N = 445 144) found that effect size estimates for the DH genotype remained largely unchanged (OR = 4.53; 95% CI, 3.42-5.90; P < 1 × 10-16) after adjustment for commonly cited VTE risk factors, such as body mass index, blood type, and markers of inflammation. In contrast, the DH genotype was not associated with a significantly higher risk of any arterial thrombosis phenotype, including stroke, myocardial infarction, and peripheral artery disease. In summary, we leveraged population-scale genomic data sets to conduct, to our knowledge, the largest study to date on the DH genotype and were able to establish far more precise effect size estimates than previously possible. Our findings indicate that the DH genotype may occur as frequently as FVL homozygosity and may confer a similarly increased risk of VTE.


Subject(s)
Biological Specimen Banks , Factor V , Heterozygote , Prothrombin , Humans , Prothrombin/genetics , Factor V/genetics , Female , Male , Middle Aged , United Kingdom/epidemiology , Aged , Risk Factors , Venous Thromboembolism/genetics , Venous Thromboembolism/epidemiology , Adult , Thrombosis/genetics , Thrombosis/epidemiology , Thrombosis/etiology , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , UK Biobank
2.
Alzheimers Dement ; 20(5): 3290-3304, 2024 May.
Article in English | MEDLINE | ID: mdl-38511601

ABSTRACT

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Whole Genome Sequencing , Humans , Alzheimer Disease/genetics , Female , Male , Genetic Predisposition to Disease/genetics , Aged , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics
3.
Circulation ; 145(20): 1524-1533, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35389749

ABSTRACT

BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.


Subject(s)
Genome-Wide Association Study , Long QT Syndrome , Electrocardiography , Heterozygote , Humans , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Multifactorial Inheritance , Whole Genome Sequencing
4.
J Hum Genet ; 68(8): 565-570, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37072623

ABSTRACT

All of Us is a biorepository aiming to advance biomedical research by providing various types of data in diverse human populations. Here we present a demonstration project validating the program's genomic data in 98,622 participants. We sought to replicate known genetic associations for three diseases (atrial fibrillation [AF], coronary artery disease, type 2 diabetes [T2D]) and two quantitative traits (height and low-density lipoprotein [LDL]) by conducting common and rare variant analyses. We identified one known risk locus for AF, five loci for T2D, 143 loci for height, and nine loci for LDL. In gene-based burden tests for rare loss-of-function variants, we replicated associations between TTN and AF, GIGYF1 and T2D, ADAMTS17, ACAN, NPR2 and height, APOB, LDLR, PCSK9 and LDL. Our results are consistent with previous literature, indicating that the All of Us program is a reliable resource for advancing the understanding of complex diseases in diverse human populations.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Population Health , Humans , Proprotein Convertase 9/genetics , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Carrier Proteins/genetics
5.
Circ Res ; 126(2): 200-209, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31691645

ABSTRACT

RATIONALE: Genome-wide association studies have identified over 100 genetic loci for atrial fibrillation (AF); recent work described an association between loss-of-function (LOF) variants in TTN and early-onset AF. OBJECTIVE: We sought to determine the contribution of rare and common genetic variation to AF risk in the general population. METHODS: The UK Biobank is a population-based study of 500 000 individuals including a subset with genome-wide genotyping and exome sequencing. In this case-control study, we included AF cases and controls of genetically determined white-European ancestry; analyses were performed using a logistic mixed-effects model adjusting for age, sex, the first 4 principal components of ancestry, empirical relationships, and case-control imbalance. An exome-wide, gene-based burden analysis was performed to examine the relationship between AF and rare, high-confidence LOF variants in genes with ≥10 LOF carriers. A polygenic risk score for AF was estimated using the LDpred algorithm. We then compared the contribution of AF polygenic risk score and LOF variants to AF risk. RESULTS: The study included 1546 AF cases and 41 593 controls. In an analysis of 9099 genes with sufficient LOF variant carriers, a significant association between AF and rare LOF variants was observed in a single gene, TTN (odds ratio, 2.71, P=2.50×10-8). The association with AF was more significant (odds ratio, 6.15, P=3.26×10-14) when restricting to LOF variants located in exons highly expressed in cardiac tissue (TTNLOF). Overall, 0.44% of individuals carried TTNLOF variants, of whom 14% had AF. Among individuals in the highest 0.44% of the AF polygenic risk score only 9.3% had AF. In contrast, the AF polygenic risk score explained 4.7% of the variance in AF susceptibility, while TTNLOF variants only accounted for 0.2%. CONCLUSIONS: Both monogenic and polygenic factors contribute to AF risk in the general population. While rare TTNLOF variants confer a substantial AF penetrance, the additive effect of many common variants explains a larger proportion of genetic susceptibility to AF.


Subject(s)
Atrial Fibrillation/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Aged , Connectin/genetics , Databases, Genetic , Exome , Female , Humans , Loss of Function Mutation , Male , Middle Aged , Penetrance
6.
PLoS Genet ; 15(12): e1008500, 2019 12.
Article in English | MEDLINE | ID: mdl-31869403

ABSTRACT

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Subject(s)
Black or African American/genetics , Hispanic or Latino/genetics , Precision Medicine/methods , Whole Genome Sequencing/methods , beta-Globins/genetics , Adult , Aged , Aged, 80 and over , Computational Biology/methods , Databases, Genetic , Female , Gene Frequency , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study , Genotyping Techniques , Humans , Linkage Disequilibrium , Male , Middle Aged , United States
7.
Circulation ; 142(5): 466-482, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32403949

ABSTRACT

BACKGROUND: The human heart requires a complex ensemble of specialized cell types to perform its essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase our understanding of cardiac homeostasis and pathology. As recent advances in low-input RNA sequencing have allowed definitions of cellular transcriptomes at single-cell resolution at scale, we have applied these approaches to assess the cellular and transcriptional diversity of the nonfailing human heart. METHODS: Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing with samples from 7 human donors, selected for their absence of overt cardiac disease. Individual nuclear transcriptomes were then clustered based on transcriptional profiles of highly variable genes. These clusters were used as the basis for between-chamber and between-sex differential gene expression analyses and intersection with genetic and pharmacologic data. RESULTS: We sequenced the transcriptomes of 287 269 single cardiac nuclei, revealing 9 major cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include 2 distinct groups of resident macrophages, 4 endothelial subtypes, and 2 fibroblast subsets. Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in cardiomyocyte transcriptional programs but also in subtypes involved in extracellular matrix remodeling and vascularization. Using genetic association data, we identified strong enrichment for the role of cell subtypes in cardiac traits and diseases. Intersection of our data set with genes on cardiac clinical testing panels and the druggable genome reveals striking patterns of cellular specificity. CONCLUSIONS: Using large-scale single nuclei RNA sequencing, we defined the transcriptional and cellular diversity in the normal human heart. Our identification of discrete cell subtypes and differentially expressed genes within the heart will ultimately facilitate the development of new therapeutics for cardiovascular diseases.


Subject(s)
Myocardium/cytology , Transcription, Genetic , Adipocytes/metabolism , Adult , Aged , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Endothelial Cells/classification , Endothelial Cells/metabolism , Fibroblasts/classification , Fibroblasts/metabolism , Gene Ontology , Heart/innervation , Heart Atria/cytology , Heart Diseases/drug therapy , Heart Ventricles/cytology , Homeostasis , Humans , Lymphocyte Subsets/metabolism , Macrophages/classification , Macrophages/metabolism , Microfluidic Analytical Techniques , Middle Aged , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Smooth Muscle/metabolism , Pericytes/metabolism , RNA-Seq , Sex Characteristics , Single-Cell Analysis , Transcriptome
8.
Circulation ; 139(4): 489-501, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30586722

ABSTRACT

BACKGROUND: Heart failure (HF) is a morbid and heritable disorder for which the biological mechanisms are incompletely understood. We therefore examined genetic associations with HF in a large national biobank, and assessed whether refined phenotypic classification would facilitate genetic discovery. METHODS: We defined all-cause HF among 488 010 participants from the UK Biobank and performed a genome-wide association analysis. We refined the HF phenotype by classifying individuals with left ventricular dysfunction and without coronary artery disease as having nonischemic cardiomyopathy (NICM), and repeated a genetic association analysis. We then pursued replication of lead HF and NICM variants in independent cohorts, and performed adjusted association analyses to assess whether identified genetic associations were mediated through clinical HF risk factors. In addition, we tested rare, loss-of-function mutations in 24 known dilated cardiomyopathy genes for association with HF and NICM. Finally, we examined associations between lead variants and left ventricular structure and function among individuals without HF using cardiac magnetic resonance imaging (n=4158) and echocardiographic data (n=30 201). RESULTS: We identified 7382 participants with all-cause HF in the UK Biobank. Genome-wide association analysis of all-cause HF identified several suggestive loci (P<1×10-6), the majority linked to upstream HF risk factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM analysis replicated in independent cohorts, persisted after HF risk factor adjustment, and were associated with indices of left ventricular dysfunction in individuals without clinical HF. In addition, analyses of loss-of-function variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10-5). CONCLUSIONS: We found several distinct genetic mechanisms of all-cause HF in a national biobank that reflect well-known HF risk factors. Phenotypic refinement to a NICM subtype appeared to facilitate the discovery of genetic signals that act independently of clinical HF risk factors and that are associated with subclinical left ventricular dysfunction.

9.
Genomics ; 111(4): 808-818, 2019 07.
Article in English | MEDLINE | ID: mdl-29857119

ABSTRACT

The Alzheimer's Disease Sequencing Project (ADSP) performed whole genome sequencing (WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype calling of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control (QC) Working Group applied QC protocols to project-level variant call format files (VCFs) from each pipeline, and developed and implemented a novel protocol, termed "consensus calling," to combine genotype calls from both pipelines into a single high-quality set. QC was applied to autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample outliers were noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; the remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset contains 27,896,774 SNVs and 3,133,926 indels and is publicly available.


Subject(s)
Alzheimer Disease/genetics , Genome-Wide Association Study/standards , Genotyping Techniques/standards , Quality Control , Whole Genome Sequencing/standards , Algorithms , Female , Genome-Wide Association Study/methods , Genotype , Genotyping Techniques/methods , Humans , Male , Polymorphism, Genetic , Whole Genome Sequencing/methods
10.
Circulation ; 137(10): 1027-1038, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29129827

ABSTRACT

BACKGROUND: The long-term probability of developing atrial fibrillation (AF) considering genetic predisposition and clinical risk factor burden is unknown. METHODS: We estimated the lifetime risk of AF in individuals from the community-based Framingham Heart Study. Polygenic risk for AF was derived using a score of ≈1000 AF-associated single-nucleotide polymorphisms. Clinical risk factor burden was calculated for each individual using a validated risk score for incident AF comprised of height, weight, systolic and diastolic blood pressure, current smoking status, antihypertensive medication use, diabetes mellitus, history of myocardial infarction, and history of heart failure. We estimated the lifetime risk of AF within tertiles of polygenic and clinical risk. RESULTS: Among 4606 participants without AF at 55 years of age, 580 developed incident AF (median follow-up, 9.4 years; 25th-75th percentile, 4.4-14.3 years). The lifetime risk of AF >55 years of age was 37.1% and was substantially influenced by both polygenic and clinical risk factor burden. Among individuals free of AF at 55 years of age, those in low-polygenic and clinical risk tertiles had a lifetime risk of AF of 22.3% (95% confidence interval, 15.4-9.1), whereas those in high-risk tertiles had a risk of 48.2% (95% confidence interval, 41.3-55.1). A lower clinical risk factor burden was associated with later AF onset after adjusting for genetic predisposition (P<0.001). CONCLUSIONS: In our community-based cohort, the lifetime risk of AF was 37%. Estimation of polygenic AF risk is feasible and together with clinical risk factor burden explains a substantial gradient in long-term AF risk.


Subject(s)
Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Hypertension/epidemiology , Myocardial Infarction/epidemiology , Adult , Antihypertensive Agents/therapeutic use , Atrial Fibrillation/drug therapy , Cohort Studies , Community-Based Participatory Research , Female , Follow-Up Studies , Genetic Predisposition to Disease , Humans , Hypertension/drug therapy , Hypertension/genetics , Longitudinal Studies , Male , Middle Aged , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Risk Factors , United States/epidemiology
11.
PLoS Genet ; 12(2): e1005874, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26910538

ABSTRACT

Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.


Subject(s)
Genetic Loci , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Chromosomes, Human , Gene Expression , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/metabolism , White People/genetics
12.
PLoS Genet ; 12(10): e1006327, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764101

ABSTRACT

We performed an exome-wide association analysis in 1393 late-onset Alzheimer's disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5-15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the ß-amyloid cascade.


Subject(s)
Alzheimer Disease/genetics , Drosophila Proteins/genetics , Membrane Proteins/genetics , Receptors, Notch/genetics , Tropomyosin/genetics , Age of Onset , Aged , Alleles , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Apolipoproteins E/genetics , Drosophila melanogaster/genetics , Exome/genetics , Female , Genome-Wide Association Study , Genomics , Humans , Iceland , Intracellular Signaling Peptides and Proteins/genetics , Male , Mutation , Phenotype , White People
13.
JAMA ; 320(22): 2354-2364, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30535219

ABSTRACT

Importance: Atrial fibrillation (AF) is the most common arrhythmia affecting 1% of the population. Young individuals with AF have a strong genetic association with the disease, but the mechanisms remain incompletely understood. Objective: To perform large-scale whole-genome sequencing to identify genetic variants related to AF. Design, Setting, and Participants: The National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine Program includes longitudinal and cohort studies that underwent high-depth whole-genome sequencing between 2014 and 2017 in 18 526 individuals from the United States, Mexico, Puerto Rico, Costa Rica, Barbados, and Samoa. This case-control study included 2781 patients with early-onset AF from 9 studies and identified 4959 controls of European ancestry from the remaining participants. Results were replicated in the UK Biobank (346 546 participants) and the MyCode Study (42 782 participants). Exposures: Loss-of-function (LOF) variants in genes at AF loci and common genetic variation across the whole genome. Main Outcomes and Measures: Early-onset AF (defined as AF onset in persons <66 years of age). Due to multiple testing, the significance threshold for the rare variant analysis was P = 4.55 × 10-3. Results: Among 2781 participants with early-onset AF (the case group), 72.1% were men, and the mean (SD) age of AF onset was 48.7 (10.2) years. Participants underwent whole-genome sequencing at a mean depth of 37.8 fold and mean genome coverage of 99.1%. At least 1 LOF variant in TTN, the gene encoding the sarcomeric protein titin, was present in 2.1% of case participants compared with 1.1% in control participants (odds ratio [OR], 1.76 [95% CI, 1.04-2.97]). The proportion of individuals with early-onset AF who carried a LOF variant in TTN increased with an earlier age of AF onset (P value for trend, 4.92 × 10-4), and 6.5% of individuals with AF onset prior to age 30 carried a TTN LOF variant (OR, 5.94 [95% CI, 2.64-13.35]; P = 1.65 × 10-5). The association between TTN LOF variants and AF was replicated in an independent study of 1582 patients with early-onset AF (cases) and 41 200 control participants (OR, 2.16 [95% CI, 1.19-3.92]; P = .01). Conclusions and Relevance: In a case-control study, there was a statistically significant association between an LOF variant in the TTN gene and early-onset AF, with the variant present in a small percentage of participants with early-onset AF (the case group). Further research is necessary to understand whether this is a causal relationship.


Subject(s)
Atrial Fibrillation/genetics , Connectin/genetics , Loss of Function Mutation , Adult , Age of Onset , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Heterozygote , Humans , Male , Middle Aged , Quality Control
14.
BMC Bioinformatics ; 18(1): 91, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28166718

ABSTRACT

BACKGROUND: Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. RESULTS: When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. CONCLUSIONS: We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.


Subject(s)
Computational Biology/methods , Huntington Disease/genetics , Sequence Analysis, RNA/methods , Bayes Theorem , Case-Control Studies , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/diagnosis , Logistic Models , Models, Theoretical , Reproducibility of Results , Sample Size
15.
Circulation ; 131(23): 2061-2069, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25862742

ABSTRACT

BACKGROUND: Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. METHODS AND RESULTS: Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high- and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold <0.05. By conditioning on polymorphisms associated with the 4 phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across 4 independent AD cohorts (total: n=29 054 AD cases and 114 824 healthy controls) and discovered 2 genome-wide significant variants on chromosome 4 (rs13113697; closest gene, HS3ST1; odds ratio=1.07; 95% confidence interval=1.05-1.11; P=2.86×10(-8)) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04-1.11; P=3.38×10(-8)). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. CONCLUSIONS: We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD.


Subject(s)
Alzheimer Disease/genetics , C-Reactive Protein/metabolism , Dyslipidemias/genetics , Genome-Wide Association Study , Inflammation/genetics , Lipids/blood , Multifactorial Inheritance/genetics , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Biomarkers/metabolism , Brain/metabolism , C-Reactive Protein/genetics , Dyslipidemias/complications , Female , Humans , Inflammation/complications , Lipids/genetics , Male , Peroxisomal Bifunctional Enzyme/genetics , Peroxisomal Bifunctional Enzyme/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors , Sulfotransferases/genetics , Sulfotransferases/metabolism
17.
Stroke ; 45(2): 403-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24436238

ABSTRACT

BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke.


Subject(s)
Stroke/epidemiology , Stroke/genetics , Age Factors , Aged , Aged, 80 and over , Area Under Curve , Case-Control Studies , Cohort Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , ROC Curve , Regression Analysis , Risk Factors , Sex Factors , White People
18.
Sci Rep ; 14(1): 6267, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491158

ABSTRACT

Previous studies found lipid levels, especially triglycerides (TG), are associated with acute pancreatitis, but their causalities and bi-directions were not fully examined. We determined whether abnormal levels of TG, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) are precursors and/or consequences of acute pancreatitis using bidirectional two-sample Mendelian randomization (MR) with two non-overlapping genome-wide association study (GWAS) summary statistics for lipid levels and acute pancreatitis. We found phenotypic associations that both higher TG levels and lower HDL-C levels contributed to increased risk of acute pancreatitis. Our GWAS meta-analysis of acute pancreatitis identified seven independent signals. Genetically predicted TG was positively associated with acute pancreatitis when using the variants specifically associated with TG using univariable MR [Odds ratio (OR), 95% CI 2.02, 1.22-3.31], but the reversed direction from acute pancreatitis to TG was not observed (mean difference = 0.003, SE = 0.002, P-value = 0.138). However, a bidirectional relationship of HDL-C and acute pancreatitis was observed: A 1-SD increment of genetically predicted HDL-C was associated with lower risk of acute pancreatitis (OR, 95% CI 0.84, 0.76-0.92) and genetically predisposed individuals with acute pancreatitis have, on average, 0.005 SD lower HDL-C (mean difference = - 0.005, SE = 0.002, P-value = 0.004). Our MR analysis confirms the evidence of TG as a risk factor of acute pancreatitis but not a consequence. A potential bidirectional relationship of HDL-C and acute pancreatitis occurs and raises the prospect of HDL-C modulation in the acute pancreatitis prevention and treatment.


Subject(s)
Genome-Wide Association Study , Pancreatitis , Humans , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Acute Disease , Pancreatitis/genetics , Polymorphism, Single Nucleotide , Triglycerides , Risk Factors , Cholesterol, LDL/genetics , Cholesterol, HDL/genetics
19.
Nat Commun ; 15(1): 4304, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773065

ABSTRACT

Increased left atrial volume and decreased left atrial function have long been associated with atrial fibrillation. The availability of large-scale cardiac magnetic resonance imaging data paired with genetic data provides a unique opportunity to assess the genetic contributions to left atrial structure and function, and understand their relationship with risk for atrial fibrillation. Here, we use deep learning and surface reconstruction models to measure left atrial minimum volume, maximum volume, stroke volume, and emptying fraction in 40,558 UK Biobank participants. In a genome-wide association study of 35,049 participants without pre-existing cardiovascular disease, we identify 20 common genetic loci associated with left atrial structure and function. We find that polygenic contributions to increased left atrial volume are associated with atrial fibrillation and its downstream consequences, including stroke. Through Mendelian randomization, we find evidence supporting a causal role for left atrial enlargement and dysfunction on atrial fibrillation risk.


Subject(s)
Atrial Fibrillation , Deep Learning , Genome-Wide Association Study , Heart Atria , Humans , Atrial Fibrillation/physiopathology , Atrial Fibrillation/genetics , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Heart Atria/physiopathology , Heart Atria/pathology , Male , Female , Middle Aged , Aged , Magnetic Resonance Imaging , Mendelian Randomization Analysis , Risk Factors , Atrial Function, Left/physiology , Stroke Volume , Stroke , United Kingdom/epidemiology , Genetic Loci , Genetic Predisposition to Disease
20.
Nat Med ; 30(6): 1749-1760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806679

ABSTRACT

Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.


Subject(s)
Fibrosis , Genome-Wide Association Study , Magnetic Resonance Imaging , Humans , Male , Female , Middle Aged , Machine Learning , Aged , Pancreas/pathology , Pancreas/diagnostic imaging , Organ Specificity/genetics , Kidney/pathology , Liver/pathology , Liver/metabolism , Myocardium/pathology , Myocardium/metabolism , Adult
SELECTION OF CITATIONS
SEARCH DETAIL